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Abstract

In Martin Gardner’s October 1976 Mathematical Games column in Scientific American,

he posed the following problem: “What is the smallest number of [queens] you can put on

an [n× n chessboard] such that no [queen] can be added without creating three in a row, a

column, or a diagonal?” We use the Combinatorial Nullstellensatz to prove that this number

is at least n, except in the case when n is congruent to 3 modulo 4, in which case one less

may suffice. A second, more elementary proof is also offered in the case that n is even.

1 Introduction.

In Martin Gardner’s October 1976 Mathematical Games column in Scientific American, he

introduced this combinatorial chessboard problem: What is the minimum number of counters

that can be placed on an n×n chessboard, no three in a line, such that adding one more counter

on any vacant square will produce three in a line? He dubbed the problem the minimum no-3-

in-a-line problem.

Figure 1 shows an 8× 8 chessboard with an initial placement of 9 black queens with no three in

a line. This placement is maximal, that is, any additional queen will create three in a line. The

figure illustrates the corresponding ‘three-in-a-line’ created when an additional queen, shown in

a distinct shading, is placed in the fourth column and eighth row. This particular placement

is also of minimum size (where size of a placement is the number of queens in the placement),

that is, there is no placement with eight or fewer queens meeting the requirements.

Gardner makes the following observation [8, Chapter 5, pg. 71]:

If ‘line’ is taken in the broadest sense — a straight line of any orientation — the

problem is difficult. . . The problem is also unsolved if ‘line’ is restricted to orthogo-

nals and diagonals.

In this paper we provide a lower bound for this latter queens version of the problem.
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Figure 1: Maximal 8× 8 placement

Theorem 1 For n ≥ 1, the answer to Gardner’s no-3-in-a-line problem is at least n, except in

the case when n is congruent to 3 modulo 4, in which case one less may suffice.

We offer an elementary, ad hoc proof in the case of n even (the approach yields a lower bound

of only n−1 when n is odd). This proof, similar to an incomplete argument of John Harris [11],

is provided in Section 4.

The proof of Theorem 1 for arbitrary n ultimately relies on the Nullstellensatz. Hilbert’s

“zero-locus theorem” [12] is a foundational result that connects geometry and algebra. In [2],

Alon leverages a special case of Hilbert’s theorem to prove a Combinatorial Nullstellensatz

(reproduced here as Theorem 2) that is ideally suited for obtaining lower bounds on restricted-

sum sets and other similar objects (see [14, Chapter 9]).

The proof we present in Section 3 using the Combinatorial Nullstellensatz is inspired by a

similar proof of Alon and Füredi [3]; their proof gives a result about the number of hyperplanes

needed to cover all but one of the vertices of the hypercube (see [2, Theorem 6.3]). We believe

that our proof serves as a nice illustrative application of the Combinatorial Nullstellensatz.

We may arrive at lower bounds that are weaker than those promised by Theorem 1 quite quickly.

If we make the observation that each of the q queens ‘covers’ at most 4n−4 squares and each of

the n2 squares requires either two queens to ‘cover’ it or one queen to occupy it, a lower bound

of n
2 follows [1]. This last observation can be strengthened by noting that only a few queens

can cover 4n− 4 squares. However, any queen covers at ‘worst’ 3n− 3 squares, though still we

could not push this line of argument to get us to n.

Prior to our proof of Theorem 1, we discuss some history of the problem drawn from Gardner’s

notes and correspondence pertaining to his writing of the Scientific American column [7] – this

is done in Section 2. Section 3, as mentioned above, presents a proof of Theorem 1 using the

Combinatorial Nullstellensatz. We also offer a more elementary proof in Section 4.
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n 1 2 3 4 5 6 7 8 9

m3(n) 1 4 4 4 6 6 8 9 10

n 10 11 12 13 14 15 16 17 18

m3(n) 10 12 12 [13,14] [14,16] [14,16] [16,18] [17,20] [18,20]

Table 1: m3(n), for small values of n. Brackets indicate lower and upper bounds.

2 History.

Gardner and some of his readers found good placements – a placement is good if it does not

contain three queens in a line and loses this property upon the addition of a queen to an

unoccupied square – via pencil-and-paper; others conducted computer searches. We also con-

ducted computer searches, though with computing power that is better than it was 35 years

ago. Collectively, these results are contained in Table 1; m3(n) denotes the answer to Gardner’s

no-3-in-a-line problem on an n× n chessboard. A bold-faced entry in the second row indicates

that an improvement was made to previous knowledge.

Theorem 1 is not “tight” for small values of n. The data suggest for n odd and n ≥ 3 that

we should have m3(n) ≥ n + 1. Our search for good placements was done via brute-force

search1. As such, and to illustrate the computational challenges involved, our program took

around 900 3GHz-CPU hours to confirm that there is no good placement of 11 queens on an

11× 11 chessboard. We estimate that the corresponding search for a 13× 13 chessboard using

our program would require at least 70 thousand 3GHz-CPU hours.

Figure 2: Maximal placements: 14 queens for n = 13; 16 queens for n ∈ {14, 15}.

In that October column (and in an addendum [8] to it), Gardner gave a few results on the

1The C code that performed this search is available in the source package for [5] at http://arXiv.org.
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Figure 3: Maximal placements: 18 queens for n = 16; 20 queens for n ∈ {17, 18}.

queens version. These included placements of queens on chessboards 3 × 3 through 12 × 12,

which provided upper bounds on this number. His archives also contain a good placement of

52 queens on a 48× 48 chessboard [7]. Gardner also stated that John Harris of Santa Barbara,

CA (who, we later learned, was a frequent correspondent of Gardner’s) was able to show that

the minimum number of queens needed for an n × n chessboard is at least n, except when

n is congruent to 3 modulo 4, in which case it could be one less. Gardner did not supply

Harris’ argument. These results were the “jumping off” point of our investigations — mostly,

we wondered what Harris’ argument was.

Subsequent to obtaining our results that confirm and improve upon those of Harris, we were

able to obtain copies of Gardner’s notes and correspondences concerning this problem [7]. These

are a small fraction of the 60 linear feet(!) of notes and correspondences archived at Stanford

University that pertain to his writing of the Mathematical Games column. (These materials

were a gift to Stanford by Gardner in 2002.) There are numerous carbon-copies of letters

that Gardner wrote to other mathematicians, as well as readers, and copies of letters they

wrote to him about the problem. Chronologically first is a letter, dated June 2, 1975, that

Gardner wrote to the world-renowned John H. Conway. In it, he states that the problem

occurred to him while considering a game of the mathematician Stanislaw Ulam (though not

the game that commonly goes by the name Ulam’s game) — the game had appeared in an earlier

column. The game consists of taking turns “putting a counter on an n × n [chessboard] until

one person wins by getting 3 in line, orthogonally or diagonally.” In the weeks that followed

were letters to and from Bill Sands (then a Ph.D. student at U. Manitoba, now at U. Calgary),

who independently suggested the problem, and John Harris, including one that sketches some

ideas for the above-mentioned claim. Subsequent letters from readers (that appeared after the

October 1976 column) contained their best solutions to the problem for small chessboards; some

of Gardner’s notes do the same.

4



Of course, the reader may be more aware of some related or similarly worded problems. Gardner

mentioned one of them in that month’s column, the maximum no-3-in-a-line problem, that is,

what is the maximum number of counters (or queens) one can place on an n× n chessboard so

that there are no three in a line? Here an easy upper bound of 2n follows from the pigeonhole

principle as each of the n columns may contain at most 2 counters — Guy and Kelly [10] showed

that one is ‘unlikely’ to find any with more than ∼ 1.87n queens – this was later corrected to

∼ 1.81n queens (see [13, A000769]). Another related problem is the queens domination problem.

In this problem, one asks for the minimum number of queens needed so that each square of the

chessboard is either occupied or attacked. There are two versions of this problem, one where

the queens are non-attacking and the other where this restriction is lifted, see [4] and [6] for

some results.

3 Proof of Main Theorem via the Combinatorial Nullstellen-

satz.

In this section we prove Theorem 1 using the Combinatorial Nullstellensatz. To begin, we give

a brief discussion of the theorem to be applied and its statement.

The Fundamental Theorem of Algebra tells us that a degree-t polynomial f(x) contained in

a polynomial ring F [x] has at most t zeros. Said another way, for any set S contained in F

of cardinality greater than t, there is an element s ∈ S such that f(s) is nonzero. One may

think of this as saying, either a polynomial is zero everywhere or it is zero in very few places.

The following theorem, known as the Combinatorial Nullstellensatz, generalizes this fact to

polynomials of several variables — it is due to Alon [2, Theorem 1.2]. We may think of it as

saying that a multivariable polynomial that isn’t zero everywhere has a non-root in a box of

large enough volume.

Theorem 2 [Combinatorial Nullstellensatz, Theorem 1.2 [2]] Let F be an arbitrary field, and

let f = f(x1, . . . , xn) be a polynomial in F [x1, . . . , xn]. Suppose the degree deg(f) of f is
∑n

i=1 ti, where each ti is a nonnegative integer, and suppose the coefficient of
∏n

i=1 x
ti
i in f is

nonzero. Then, if S1, . . . , Sn are subsets of F with |Si| > ti, there are s1 ∈ S1, . . . , sn ∈ Sn so

that f(s1, . . . , sn) 6= 0.

So that we might precisely state our results, we introduce some definitions and notation. We

consider the infinite square Z-lattice as a chessboard and its vertices as squares of the chessboard.

A board B is a finite subset of the chessboard. Let Bn denote the board [1, n] × [1, n]. As we

are interested in the queens version of the problem, the lines that we concern ourselves with
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have slope 0,+1,−1, or ∞ and contain vertices of the lattice — so, throughout we use line

to refer to a line of this type. Any subset S of the infinite square lattice may be considered a

placement of queens, or placement for short, by imagining a queen on each corresponding square

of the chessboard. The size of a placement S is its cardinality |S|. We say that two queens of a

placement Q define a line if they lie on the same row, column or diagonal. In such a way, the

placement Q defines a set of lines, the set of lines defined by the pairs of Q. Lastly, we call a

placement good if does not contain 3 queens in a line and loses this property upon the addition

of a queen to an unoccupied square.

Let mk(n) denote the minimum size of a placement on Bn such that there are no k queens in

a line and the placement loses this property upon the addition of a queen to an unoccupied

square of Bn. As indicated by our title, our focus is on k = 3.

We warn the reader that the placements we seek need not have each queen of a placement on

a line with another queen. See Figure 4 for an example with n = 4.

Figure 4: Good placement with one queen not collinear with any other.

We first prove the result for n = 4k + 1, where k is a nonnegative integer, as in this case the

presentation is cleanest. We next establish the result for n = 4k, and we omit the details for

the other two cases as these are similar.

Proof of Theorem 1

Let n = 4k + 1, where k is a positive integer. (The result is obvious for k = 0, i.e., n = 1.) Let

Q be a good placement on Bn with size q = |Q| ≤ 4k. Our proof will proceed by constructing

a polynomial f(x, y) of total degree 8k that vanishes on each square (x, y) ∈ Bn. We will then

obtain a contradiction through a suitable application of the Combinatorial Nullstellensatz.

We shall construct f as a product of linear factors of three different types. The first type

consists of the set of lines defined by Q. Since the placement Q is good, every unoccupied

square of Bn is in the zero locus of at least one line of the first type.

As shown in Figure 4, there may be some queens in Q not on any defining line. Let Q′ =

{Q1, . . . , Qq′} denote the (possibly empty) subset of queens not collinear with any other queen

in Q. For each Qi ∈ Q′ we define a new line that passes through the square occupied by Qi.
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While we are free to choose any one of the four possible slopes for each line, it is most convenient

to distribute the slopes as evenly as possible. Hence we choose the slope of the ith line to be the

jth element of (0,+1,−1,∞), where j ≡ i mod 4. Every occupied square is in the zero locus

of at least one line of either of the first two types.

For each of the four possible slopes there are at most
⌊

4k−q′

2

⌋

lines of that slope of the first type

and at most
⌈

q′

4

⌉

lines of that slope of the second type. These quantities sum to at most 2k.

As necessary, define new, distinct lines (of the third type) in each of the four directions so that

there are exactly 2k lines of each slope among the three types. (The lines of the third type serve

only to facilitate the application of the Combinatorial Nullstellensatz; it is immaterial which

squares they vanish on.)

Let L = {L1, . . . , L8k} be our set of 8k lines and let li = 0 be the equation in variables x and y

defining Li. We then define

f(x, y) =

8k
∏

i=1

li ∈ R[x, y]. (1)

As desired, the polynomial f(x, y) = 0 for every (x, y) ∈ Bn as every unoccupied square is on

a line of the first type and every occupied square is on a line of either the first or second type.

By construction, the total degree of f is 8k. If we group the factors in f according to slope, we

see that f can be rewritten as

f(x, y) =
2k
∏

j=1

(x− αj)(y − βj)(x− y − γj)(x+ y − δj) (2)

for suitable constants αj, βj , γj , δj . From equation (2) and the binomial theorem, we conclude

that the coefficient of the top-degree term x4ky4k is ±
(2k
k

)

, i.e., nonzero.

We now apply Theorem 2 to f(x, y), where t1 = t2 = 4k and S1 = S2 = {1, . . . , 4k + 1}, to

obtain that there are s1 ∈ S1, s2 ∈ S2 such that f(s1, s2) 6= 0. We have reached a contradiction.

Therefore, the result holds when n is congruent to 1 modulo 4.

Let us now consider n = 4k, where k is a positive integer. We proceed in a similar manner to

the above. Again, we consider a good placement on Bn, this time of size q ≤ 4k − 1. Similarly,

let q′ = 4r + s denote the size of Q′, where r and s are integers with 0 ≤ s ≤ 3. As before,

we define lines of the first type and the second type, distributing those of the second type as

evenly as possible. For each possible slope, the number of lines is at most

g(r, s) =

⌊

4k − 1− 4r − s

2

⌋

+

⌈

4r + s

4

⌉

. (3)

For s 6= 1, we have g(r, s) ≤ 2k− 1. Likewise, for s = 1 and r > 0, we have g(r, s) ≤ 2k− 1. For

these values, we proceed as before, adding more lines so that there are 2k − 1 of each possible

slope. We may now construct a polynomial of degree 8k − 4 and see that the coefficient of
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the x4k−1y4k−3 term is nonzero. As before, applying Theorem 2 we reach a contradiction with

t1 = 4k − 1 and t2 = 4k − 3 and S1 = S2 = {1, . . . , 4k}.

We are left to consider the case where s = 1 and r = 0, i.e., q′ = 1. In the process of defining

lines of the first type, since q ≤ 4k − 1 and q′ = 1 we may have 2k − 1 lines of each possible

slope. We define one new line of the second type for the single queen in Q′, giving it slope ∞.

Finally, we add more lines as necessary so that there are precisely 2k with slope∞ and 2k−1 for

each of the other three slopes. Our polynomial has degree 8k− 3 and we consider the following

leading term with nonzero coefficient,
(2k−1

k

)

x2ky2k−1(x2)k−1(−y2)k = (−1)k
(2k−1

k

)

x4k−2y4k−1.

As before, applying Theorem 2 we reach a contradiction with t1 = 4k − 2, t2 = 4k − 1 and

S1 = S2 = {1, . . . , 4k}. This completes the proof in this case.

The cases of n = 4k + 2 and n = 4k + 3 follow in a similar manner and are left to the reader.

This completes the proof.

4 A second proof.

We now present a second proof to Theorem 1 for the case n is even and obtain a slightly

weaker result when n is odd by showing that one needs at least n− 1 queens; this proof is more

elementary than the one given in Section 3. While we arrived at it independently, many of the

ideas are to be found in a June 7, 1975 letter of John Harris to Martin Gardner [11]. In the

case when n ≡ 3 mod 4, Harris only claimed n− 1 queens are required. A similar proof for the

no-two-in-a-line problem can be found in [15, Chapter 8].

We may refer to a square of Bn by the coordinates (x, y) of its corresponding vertex.

Proof: The claim is easily checked for n = 1, so we assume n ≥ 2. Let Q be a good placement

of size q on Bn. We distinguish between the lines of slope 0 or ∞ defined by Q and those of

slope ±1. To this end, set U ⊆ Bn to be the set of squares left uncovered by a line of slope 0

or ∞ and set Q′′ ⊆ Q to be those queens not involved in defining a line of slope 0 or ∞. (Note

that squares in U may still be occupied by a queen in Q′′.) Write q′′ = |Q′′|. For any index

i ∈ {1, . . . , n} (respectively j ∈ {1, . . . , n}) let Ci = {(i, k) ∈ U : 1 ≤ k ≤ n} (respectively

Rj = {(k, j) ∈ U : 1 ≤ k ≤ n}).

The sets Ci and Rj keep track of the squares in U for each column and row. Let a < b be

the minimum and maximum indices, respectively, for which Ci 6= ∅. Set c to be the number

of the Ci that are nonempty. Define a′ < b′ and r analogously for the sets Rj. Note that

c, r ≥ n − q−q′′

2 . In particular, c ≤ 1 or r ≤ 1 requires q ≥ 2(n − 1). We therefore assume for

the rest of the proof that r, c ≥ 2. Without loss of generality, we may assume b− a ≥ b′ − a′ as

otherwise we may rotate the placement by 90◦. Figure 5 illustrates the various definitions of a
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13-queen good placement on a 10× 10 chessboard.

Figure 5: q = 13, q′′ = 1, c = r = 4. Squares of U are shaded. Dark shading indicates those

that are also in C3 ∪ C9. The pale-shaded queen indicates the single queen in Q′′.

As Q is good, the squares of Ca ∪ Cb are either occupied or ‘attacked’ via a pair of queens

that would define a line of slope ±1. By definition, |Q ∩ Ca| ≤ 1, |Q ∩ Cb| ≤ 1, and so

|Q ∩ (Ca ∪Cb)| ≤ min{q′′, 2}. There is at most one line of slope +1 that attacks two squares of

Ca∪Cb (the line would be a diagonal of the ‘rectangle’ formed by Ca∪Cb∪Ra′ ∪Rb′). Likewise,

there is at most one line of slope −1 that attacks two squares of Ca ∪ Cb. Each of the other

lines of slope ±1 defined by Q attack at most one square of Ca ∪ Cb. The placement Q must

therefore define at least 2r − 2−min{q′′, 2} lines of slope ±1. Furthermore,

2r − 2−min{q′′, 2} ≥ 2

(

n−
q − q′′

2

)

− 2− q′′ = 2n− q − 2. (4)

Note that the q queens of Q can define at most q lines of slope ±1. Thus, q ≥ 2n− q − 2, and

so q ≥ n− 1.

We now restrict n to be even and we will reach a contradiction by assuming that q ≤ n− 1. As

n− 1 is odd, there are at most n−2
2 lines of each possible slope defined by the placement Q. In

particular, there are a total of at most n− 2 lines of slopes ±1.

If q′′ = 0, then r ≥ n − n−2
2 = n

2 + 1, and so 2r − 2 ≥ n. So, we need at least n lines of slope

±1 — a contradiction.

If q′′ > 0, then r ≥ n − q−q′′

2 ≥ n − (n−1)−q′′

2 = n
2 + q′′+1

2 . We have 2r − 2 − min{q′′, 2} ≥

2(n2 + q′′+1
2 ) − 2 − q′′ = n − 1, and so we need at least n − 1 lines of slopes ±1 — again, a

contradiction.
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