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Abstract

A 1976 question of Martin Gardner asked for the minimum size of a placement of queens

on an n×n chessboard that is maximal with respect to the property of ‘no-3-in-a-line’. The

work of Cooper, Pikhurko, Schmitt and Warrington showed that this number is at least n

in the cases that n ̸≡ 3 (mod 4), and at least n− 1 in the case that n ≡ 3 (mod 4). When

n > 1 is odd, Gardner conjectured the lower bound to be n + 1. We prove this conjecture

in the case that n ≡ 1 (mod 4). The proof relies heavily on a recent advancement to the

Combinatorial Nullstellensatz for zero-sum grids due to Bogdan Nica.
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1 Introduction.

The journal Scientific American was the home to Martin Gardner’s Mathematical Games col-

umn for over 25 years. In one such column in 1976, he gave an intriguing question in extremal

combinatorics. Gardner asked for the minimum number of counters one can put on an n × n

chessboard so that upon the addition of one more counter, there are three in a line and there

was not three in a line prior to the addition (see Gardner [6], Chapter 5, pg. 71). This is called

the minimum no-3-in-a-line problem. We might allow for ‘line’ to be a straight line of any

slope. In this case, we point the reader to the recent work of Aichholzer, Eppstein, and Hainzl

[1]. However, in this paper we examine when ‘line’ refers only to orthogonals and diagonals (as
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Figure 1: An example of a maximal placement with 10 queens on a 9× 9 board.

was also done in [3]); this is the queens version of the problem since it properly relates to how

a queen is permitted to move in a game of chess.

Consider Figure 1, which shows a 9×9 chessboard with a placement of 10 queens with no three

in a line. This is a maximal placement since if we add one more queen to any vacant square

we will create three in a line. For example, an additional queen placed in the top left corner

produces three in a line along the main diagonal. There are no placements of nine or fewer

queens on the 9 × 9 board, making the one given of minimum size (where size of a placement

is the number of queens in the placement).

A history of the queens version problem is given in [3]1. Here we offer a brief summary of known

results. Cooper, Pikhurko, Schmitt and Warrington [3] gave the following.

Theorem 1. [Cooper, Pikhurko, Schmitt, Warrington [3]] For n ≥ 1, the answer to Gardner’s

no-3-in-a-line queens version problem is at least n, except in the case when n is congruent to 3

modulo 4, in which case one less may suffice.

A simple combinatorial proof in the case of n even was given, though this only provided a lower

bound of n−1 when n is odd. To obtain the full result, the proof of Theorem 1 relied on Alon’s

Combinatorial Nullstellensatz (reproduced here as Theorem 3).2

Let m3(n) denote the answer to Gardner’s no-3-in-a-line queens version problem on an n × n

1The published version of this paper contains an editorial error in the abstract. The arxiv version 2 corrects

this error.
2Alon’s seminal work [2] contains many applications of this theorem, and these have served as a huge inspi-

ration to many, including ourselves. This inspiration continues into this present paper.
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n 1 2 3 4 5 6 7 8 9

m3(n) 1 4 4 4 6 6 8 9 10

n 10 11 12 13 14 15 16 17 18

m3(n) 10 12 12 14 15 16 17 18 18

n 19 20 21 22 23 24 25 26 27

m3(n) 20 21 22 23 24 25 26 26 28

Table 1: All known values of m3(n).

chessboard. Gardner knew the precise value of m3(n) for small values of n, and a few more

precise values were given in [3]. Subsequently, Rob Pratt [10] framed the problem as an integer

linear programming problem and Don Knuth [8] brought the power of SAT-solvers to bear on

the problem. Their results are cumulatively stated as an entry in the On-line Encyclopedia of

Integer Sequences [11, A219760]. All values for which m3(n) is known precisely are given in

Table 1.

The data given in Table 1 suggested to us that for n odd and n ≥ 3 that we should have

m3(n) ≥ n + 1; Gardner posited the same [5]3. We prove the conjecture in the case that n is

congruent to 1 modulo 4 as our main result.

Theorem 2. For n congruent to 1 modulo 4 and n ≥ 5, we have m3(n) ≥ n+ 1.

The proof of our main result relies on a mixture of the polynomial method, combinatorial

arguments and linear algebra, some of which are similar to those found in [3]. However, a new,

key ingredient is a recent strengthening of Alon’s Combinatorial Nullstellensatz due to Bogdan

Nica [9]. Before stating Nica’s theorem, we recall Part II of the Combinatorial Nullstellensatz

(i.e., the Non-vanishing Corollary).

Theorem 3. [Combinatorial Nullstellensatz, Theorem 1.2 [2]] Let F be an arbitrary field, and

let f = f(x1, . . . , xn) be a polynomial in F [x1, . . . , xn]. Suppose the degree deg(f) of f is∑n
i=1 ti, where each ti is a non-negative integer, and suppose the coefficient of

∏n
i=1 x

ti
i in f is

nonzero. Then, if S1, . . . , Sn are subsets of F with |Si| > ti, there are s1 ∈ S1, . . . , sn ∈ Sn so

that f(s1, . . . , sn) ̸= 0.

We say that a subset S of a field F is a zero-sum if the sum of the elements in S is the zero of

the field. In the case that each of the Si is a zero-sum subset of the field, Nica [9] showed that

3In a typed letter that Martin Gardner wrote to John H. Conway dated 2 June 1975, he wrote, “It would be

nice if the minimum for all odd n were n+ 1, and for all even n, n or n+ 2.”

3



the same conclusion in Theorem 3 holds under a slightly weaker degree restriction placed upon

the degree of the polynomial. Nica’s result is as follows.

Theorem 4. [Combinatorial Nullstellensatz for Zero-sum Grids, [9]] Let F be an arbitrary

field, and let f = f(x1, . . . , xn) be a polynomial in F [x1, . . . , xn]. Suppose the degree deg(f)

of f is 1 +
∑n

i=1 ti, where each ti is a non-negative integer, and suppose the coefficient of∏n
i=1 x

ti
i in f is nonzero. Then, if S1, . . . , Sn are zero-sum subsets of F with |Si| > ti, there are

s1 ∈ S1, . . . , sn ∈ Sn so that f(s1, . . . , sn) ̸= 0.

This Nullstellensatz for Zero-sum Grids is, in fact, a particular case of a more expansive theorem

that we won’t discuss here. Roughly, it says that we may relax the degree constraints on the

polynomial to reach the same conclusion of the Combinatorial Nullstellensatz whenever the

grid is “structured”, see [9]. As far as we know, the proof of Theorem 2 represents the first

application of this particular generalization of the Combinatorial Nullstellensatz [9] outside of

that paper. It is interesting to us whenever a generalization of Alon’s Nullstellensatz is truly

needed for a combinatorial problem, as is the case for our main result.

This paper is organized as follows. In Section 2 we give the necessary definitions and a sketch

of the proof of Theorem 2. In Section 3 we prove Theorem 2. In Section 4 we provide some

further remarks and also include insights into the difficulty of showing m3(n) ≥ n + 1 for the

case when n is 3 modulo 4.

2 Definitions and notation

We adopt many of the definitions and notation originally used in [3], with one important

exception. Let the infinite square Z-lattice be called a chessboard and its vertices be called

squares. A board B is a finite subset of the chessboard. For n odd, let Bn denote the board

[−n−1
2 , n−1

2 ] × [−n−1
2 , n−1

2 ].4 A square of Bn will be known by the coordinates (x, y) of its

corresponding vertex. Since we take up the queens version of the problem, we restrict our lines

to having one of the following slopes: 0,+1,−1, or ∞. These lines contain vertices of the lattice

and when we write line we mean a line of this type. A subset S of the infinite square lattice

will be called a placement of queens where there is a queen on each corresponding square of the

chessboard. The size of a placement S is given by |S|. Two queens of a placement Q define a

line if they lie on the same row, column or diagonal. The set of all collinear pairs of queens of

Q are the set of lines that Q defines. A line is said to cover a square if the coordinates of the

square is in the zero locus of the line. A placement is called good if it is maximal with respect

4This is the key difference to the set-up as compared to that of [3] as we now are considering a zero-sum grid,

thus facilitating the use of Theorem 4.
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Figure 2: An example of a good placement with one lonely queen on a 5× 5 board.

to the property of ‘no-3-in-a-line’; that is, a good placement does not have 3 collinear queens

and any proper super-set of it does. A lonely queen is one that is not collinear with any other

queen. We illustrate a placement with a lonely queen in Figure 2, where there exists one lonely

queen in the topmost row (i.e., she has coordinates (0, 2)).

We now sketch the proof of Theorem 2. We will consider a good placement Q of size at most

4k + 1. The proof will divide into two cases, which roughly depend on the number of lonely

queens. In the first case, when the number of lonely queens is not one, when q < 4k+1 or when

the number of lines defined by Q is not maximized, Q will define a set of lines and together these

lines (and perhaps some additional lines) will be used to construct a polynomial that vanishes

on the squares of the chessboard. However, we will be able to show that the coefficient on a

leading monomial of this polynomial, which is of ‘small degree,’ is non-zero, thus obtaining a

contradiction to Alon’s Combinatorial Nullstellensatz. (The proof in the first case is essentially

that found in [3] for the proof of Theorem 1.) The second case, when the number of lonely

queens is one, q = 4k+1 and the number of lines defined by Q is maximized, is more involved.

In this case, Alon’s Nullstellensatz will be insufficient. Like in the previous case, we use the set

of lines defined by Q to construct several polynomials. For each of the four possible slopes of

a line passing through the lonely queen, we define a polynomial so that it vanishes on all the

squares of the chessboard. For each polynomial, we calculate the coefficient of an appropriate

monomial, which is in terms of the coordinates of the lonely queen and sums of the intercepts of

the defining lines of Q. To compute this coefficient requires nothing more sophisticated than the

Binomial Theorem. If one of these four coefficients is non-zero, then we obtain a contradiction

to Nica’s Combinatorial Nullstellensatz for Zero-sum Grids. If each of these four coefficients

is zero, then, together with some geometric and combinatorial arguments that yield additional

equations, we will be able to construct a homogeneous system of linear equations whose solution

yields the location of the lonely queen to be centered on the board (i.e., she has coordinates

(0, 0)) along with some other attributes of the placement. This structural information allows
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for a combinatorial argument that finishes the proof.

3 Proof of Main Theorem

Proof of Theorem 2

Let n = 4k + 1 and k ≥ 1. Let Q be a good placement on Bn with size q = |Q| ≤ 4k + 1. Let

Q′ denote the (possibly empty) subset of lonely queens in Q. Let |Q′| = q′. We work towards

a contradiction.

Case 1: q′ ̸= 1, q < 4k + 1, or q′ = 1 and some queen(s) that is not lonely participates in

defining fewer than 4 lines.

We will give a polynomial f(x, y) of total degree 8k so that f(x, y) = 0 for each square (x, y) ∈
Bn. This will lead to a contradiction of the Combinatorial Nullstellensatz.5

We will define f as a product of linear factors. We first consider the set of lines defined by Q.

Since the placement Q is good, every unoccupied square of Bn is in the zero locus of at least

one of these lines. For each lonely queen Qi ∈ Q′ we will ‘artificially’ define a new line that

covers the square occupied by Qi. Such an artificial line will receive a slope of either ±1, 0 or

∞. We make the choice so as to distribute the slopes as evenly as possible. Every occupied

square is in the zero locus of at least one artificial line or one line defined by Q.

For each of the four possible slopes there are at most
⌊
q−q′

2

⌋
lines of that slope defined by Q and

at most
⌈
q′

4

⌉
artificial lines of that slope. If q′ ̸= 1 or if q < 4k+ 1, then

⌊
q−q′

2

⌋
+
⌈
q′

4

⌉
≤ 2k. If

q′ = 1 and some queen(s) that is not lonely participates in defining fewer than 4 lines, then one

of the four possible slope directions has at most 2k − 1 lines and we define a new line through

the lonely queen to have that slope. If there are fewer than 2k lines of a particular slope, we

add new lines so that there are 2k lines in total for each possible slope as this will facilitate an

application of Theorem 3.

Let L = {L1, . . . , L8k} be the set of 8k lines and let li = 0 be the equation in variables x and y

defining Li. We then define

f(x, y) =

8k∏
i=1

li ∈ R[x, y].

Notice that the polynomial f(x, y) = 0 for every (x, y) ∈ Bn as every unoccupied square is

covered by a line that Q defines and every occupied square is covered by an artificial line or a

line defined by Q. As f(x, y) is the product of 8k linear factors, the total degree of f(x, y) is

5This idea is originally to be found in [3] and it is in the latter case that new ideas are presented.
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8k. By grouping the factors in f according to slope, we may express f as

f(x, y) =
2k∏
j=1

(x− αj)(y − βj)(x− y − γj)(x+ y − δj)

for suitable constants αj , βj , γj , δj . The leading monomials of f(x, y) are the same as that of

g(x, y) = x2ky2k(x2−y2)2k. The Binomial Theorem yields the coefficient of the top-degree term

x4ky4k to be ±
(
2k
k

)
– this coefficient is nonzero.

By applying Theorem 3 to f(x, y), where t1 = t2 = 4k and S1 = S2 = {−2k, . . . , 2k}, we find

s1 ∈ S1, s2 ∈ S2 for which f(s1, s2) ̸= 0, a contradiction.

Case 2: q = 4k + 1, q′ = 1 and all other queens participate in defining a line of each of the

four possible slopes.

As we did in Case 1, we employ the polynomial method; this time we will apply Theorem 4.

We start by constructing a polynomial f1 := f1(x, y) of total degree 8k + 1 that vanishes on

each square (x, y) ∈ Bn. The polynomial f1 will be a product of linear factors. We will take

all linear factors that arise from the set of lines defined by Q. Since the placement Q is good,

every unoccupied square of Bn is in the zero locus of at least one of the lines defined by Q. As

given by the restrictions of the case, there is one lonely queen in Q′ which is not on any defining

line. For this one lonely queen Q ∈ Q′ we artificially define a new line that passes through the

square occupied by Q. While we are free to choose any one of the four possible slopes for this

one line, at this point in the proof we choose slope ∞. Every occupied square is covered by at

least one of these lines.

For each of the four possible slopes there are exactly 4k
2 = 2k lines of that slope defined by

Q and precisely one artificial line of slope ∞. (Unlike in Case 1, we never need to define any

further lines.)

Let L = {L1, . . . , L8k+1} be our set of 8k + 1 lines and let li = 0 be the equation in variables x

and y defining Li. We then define

f1(x, y) =

8k+1∏
i=1

li ∈ R[x, y].

Note that the polynomial f1(x, y) = 0 for every (x, y) ∈ Bn as every unoccupied square is on a

line defined by Q and every occupied square is on an artificial line or a line defined by Q. By

construction, the total degree of f is 8k + 1. Let (α0, β0) denote the square occupied by the

lonely queen. By grouping the factors in f1 according to slope, we may express f1 as

f1(x, y) = (x− α0)

2k∏
j=1

(x− αj)(y − βj)(x− y − γj)(x+ y − δj)
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for suitable constants αj , βj , γj , δj .

If can we conclude that the coefficient of the term x4ky4k is nonzero, then we may apply

Theorem 4 to f1(x, y), where t1 = t2 = 4k and S1 = S2 = {−2k, . . . , 2k} (zero-sum sets), to

obtain that there are s1 ∈ S1, s2 ∈ S2 such that f1(s1, s2) ̸= 0, thus obtaining a contradiction.

We thus ‘expand’ f1(x, y) and ‘collect’ like terms so that we might determine the coefficient

of x4ky4k. Since we are only interested in the coefficient on this term, we focus our analysis

only on it. Note that this term has degree one less than the degree of f1. So, to obtain such

a monomial in the expansion, from the 8k + 1 linear factors, we must choose the x-variable 4k

times, the y-variable 4k times and thus some constant once. We think of choosing that constant

first and so partition our analysis based upon whether the constant that we have chosen is some

αj , βj , γj or δj .

1. Choose some αj first for some 0 ≤ j ≤ 2k.

The remaining factors with their constant terms removed (since we can’t choose them)

are:

x2ky2k(x− y)2k(x+ y)2k.

This equals

x2ky2k(x2 − y2)2k = x2ky2k
2k∑
ℓ=0

(
2k

ℓ

)
(x2)ℓ(−y2)2k−ℓ.

The only choice of ℓ which yields the desired monomial is ℓ = k, which gives a coefficient

of
(
2k
k

)
(−1)k. This is the contribution for each αj . Thus, we have a total contribution to

the coefficient of the desired monomial of (−1)k
(
2k
k

)∑2k
j=0−αj .

2. Choose some βj first for some 1 ≤ j ≤ 2k.

The remaining factors with their constant terms removed (since we can’t choose them)

are:

x2k+1y2k−1(x− y)2k(x+ y)2k.

This equals

x2k+1y2k−1(x2 − y2)2k = x2k+1y2k−1
2k∑
ℓ=0

(
2k

ℓ

)
(x2)ℓ(−y2)2k−ℓ.

There is no choice of ℓ which yields the desired monomial, which is true for each βj . Thus,

we have a total contribution to the coefficient of the desired monomial of 0.

3. Choose some γj first for some 1 ≤ j ≤ 2k.
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The remaining factors with their constant terms removed (since we can’t choose them)

are:

x2k+1y2k(x− y)2k−1(x+ y)2k.

This equals

x2k+1y2k(x+ y)(x2 − y2)2k−1 = x2k+1y2k(x+ y)
2k−1∑
ℓ=0

(
2k − 1

ℓ

)
(x2)ℓ(−y2)2k−1−ℓ

= x2k+2y2k
2k−1∑
ℓ=0

(
2k − 1

ℓ

)
(x2)ℓ(−y2)2k−1−ℓ

+x2k+1y2k+1
2k−1∑
ℓ=0

(
2k − 1

ℓ

)
(x2)ℓ(−y2)2k−1−ℓ.

Only in the first of the two summands is there a choice of ℓ which yields the desired

monomial; it is ℓ = k−1, which gives a coefficient of
(
2k−1
k−1

)
(−1)k. This is the contribution

for each γj . Thus, we have a total contribution to the coefficient of the desired monomial

of (−1)k
(
2k−1
k−1

)∑2k
j=1−γj .

4. Choose some δj first for some 1 ≤ j ≤ 2k.

The remaining factors with their constant terms removed (since we can’t choose them)

are:

x2k+1y2k(x− y)2k(x+ y)2k−1.

This equals

x2k+1y2k(x− y)(x2 − y2)2k−1 = x2k+1y2k(x− y)
2k−1∑
ℓ=0

(
2k − 1

ℓ

)
(x2)ℓ(−y2)2k−1−ℓ

= x2k+2y2k
2k−1∑
ℓ=0

(
2k − 1

ℓ

)
(x2)ℓ(−y2)2k−1−ℓ

−x2k+1y2k+1
2k−1∑
ℓ=0

(
2k − 1

ℓ

)
(x2)ℓ(−y2)2k−1−ℓ.

Only in the first of the two summands is there a choice of ℓ which yields the desired

monomial; it is ℓ = k−1, which gives a coefficient of
(
2k−1
k−1

)
(−1)k. This is the contribution

for each δj . Thus, we have a total contribution to the coefficient of the desired monomial

of (−1)k
(
2k−1
k−1

)∑2k
j=1−δj .

The sum of these four contributions is the coefficient Cf1(4k, 4k) on x4ky4k in f1(x, y). It is

Cf1(4k, 4k) = (−1)k
(
2k

k

) 2k∑
j=0

−αj + (−1)k
(
2k − 1

k − 1

) 2k∑
j=1

−γj + (−1)k
(
2k − 1

k − 1

) 2k∑
j=1

−δj .
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If this coefficient is non-zero, then by Theorem 4 we are done. Thus, assume it is zero.

We repeat the above procedure for the placement Q with the one lonely queen at (α0, β0) by

defining a similar polynomial f2(x, y), this time with a line of slope 0 through the lonely queen,

as follows.

Let

f2(x, y) = (y − β0)
2k∏
j=1

(x− αj)(y − βj)(x− y − γj)(x+ y − δj)

for suitable constants αj , βj , γj , δj .

By repeating the above procedure or, perhaps more simply, by noting the symmetries between

f1(x, y) and f2(x, y), the coefficient Cf2(4k, 4k) on x4ky4k in f2(x, y) is

Cf2(4k, 4k) = (−1)k
(
2k

k

) 2k∑
j=0

−βj + (−1)k
(
2k − 1

k − 1

) 2k∑
j=1

−γj + (−1)k
(
2k − 1

k − 1

) 2k∑
j=1

−δj .

If this coefficient is non-zero, then by Theorem 4 we are done. Thus, assume it is zero.

We repeat the above procedure for the placement Q with the one lonely queen at (α0, β0) by

defining a similar polynomial f3(x, y), this time with a line of slope +1 through the lonely

queen, as follows.

Let

f3(x, y) = (x− y − γ0)

2k∏
j=1

(x− αj)(y − βj)(x− y − γj)(x+ y − δj)

for suitable constants αj , βj , γj , δj .

As above, we ‘expand’ f3(x, y) and ‘collect’ like terms so that we might determine the coefficient

of x4ky4k. Since we are only interested in the coefficient on this term, we focus our analysis

only on it. Note that this term has degree one less than the degree of f3. So, to obtain such

a monomial in the expansion, from the 8k + 1 linear factors, we must choose the x-variable 4k

times, the y-variable 4k times and thus some constant once. We think of choosing that constant

first and so partition our analysis based upon whether the constant that we have chosen is some

αj , βj , γj or δj .

1. Choose some αj first for some 1 ≤ j ≤ 2k.

The remaining factors with their constant terms removed (since we can’t choose them)

are:

x2k−1y2k(x− y)2k+1(x+ y)2k.
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This equals

x2k−1y2k(x− y)(x2 − y2)2k = x2k−1y2k(x− y)
2k∑
ℓ=0

(
2k

ℓ

)
(x2)ℓ(−y2)2k−ℓ

= x2ky2k
2k∑
ℓ=0

(
2k

ℓ

)
(x2)ℓ(−y2)2k−ℓ

−x2k−1y2k+1
2k∑
ℓ=0

(
2k

ℓ

)
(x2)ℓ(−y2)2k−ℓ.

Only in the first of the two summands is there a choice of ℓ which yields the desired

monomial; it is ℓ = k, which gives a coefficient of
(
2k
k

)
(−1)k. This is the contribution for

each αj . Thus, we have a total contribution to the coefficient of the desired monomial of

(−1)k
(
2k
k

)∑2k
j=1−αj .

2. Choose some βj first for some 1 ≤ j ≤ 2k.

The remaining factors with their constant terms removed (since we can’t choose them)

are:

x2ky2k−1(x− y)2k+1(x+ y)2k.

This equals

x2ky2k−1(x− y)(x2 − y2)2k = x2ky2k−1(x− y)
2k∑
ℓ=0

(
2k

ℓ

)
(x2)ℓ(−y2)2k−ℓ

= x2k+1y2k−1
2k∑
ℓ=0

(
2k

ℓ

)
(x2)ℓ(−y2)2k−ℓ

−x2ky2k
2k∑
ℓ=0

(
2k

ℓ

)
(x2)ℓ(−y2)2k−ℓ.

Only in the second of the two summands is there a choice of ℓ which yields the desired

monomial; it is ℓ = k, which gives a coefficient of (−1)
(
2k
k

)
(−1)k. This is the contribution

for each βj . Thus, we have a total contribution to the coefficient of the desired monomial

of (−1)k+1
(
2k
k

)∑2k
j=1−βj .

3. Choose some γj first for some 0 ≤ j ≤ 2k.

The remaining factors with their constant terms removed (since we can’t choose them)

are:

x2ky2k(x− y)2k(x+ y)2k.

11



This equals

x2ky2k(x2 − y2)2k = x2ky2k
2k∑
ℓ=0

(
2k

ℓ

)
(x2)ℓ(−y2)2k−ℓ.

The only choice of ℓ which yields the desired monomial is ℓ = k, which gives a coefficient

of
(
2k
k

)
(−1)k. This is the contribution for each γj . Thus, we have a total contribution to

the coefficient of the desired monomial of (−1)k
(
2k
k

)∑2k
j=0−γj .

4. Choose some δj first for some 1 ≤ j ≤ 2k.

The remaining factors with their constant terms removed (since we can’t choose them)

are:

x2ky2k(x− y)2k+1(x+ y)2k−1.

This equals

x2ky2k(x− y)2(x2 − y2)2k−1 = x2ky2k(x2 − 2xy + y2)
2k−1∑
ℓ=0

(
2k − 1

ℓ

)
(x2)ℓ(−y2)2k−1−ℓ

= x2k+2y2k
2k−1∑
ℓ=0

(
2k − 1

ℓ

)
(x2)ℓ(−y2)2k−1−ℓ

−2x2k+1y2k+1
2k−1∑
ℓ=0

(
2k − 1

ℓ

)
(x2)ℓ(−y2)2k−1−ℓ

+x2ky2k+2
2k−1∑
ℓ=0

(
2k − 1

ℓ

)
(x2)ℓ(−y2)2k−1−ℓ.

Amongst the three summands, there is a choice of ℓ = k − 1 in the first, no choice in

the second and a choice of ℓ = k in the third. This yields a coefficient of (−1)k
(
2k−1
k−1

)
+

(−1)k−1
(
2k−1
k

)
= 0. This is the contribution for each δj . Thus, we have a total contribution

to the coefficient of the desired monomial of 0.

The sum of these four contributions is the coefficient Cf3(4k, 4k) on x4ky4k in f3(x, y). It is

Cf3(4k, 4k) = (−1)k
(
2k

k

) 2k∑
j=1

−αj + (−1)k+1

(
2k

k

) 2k∑
j=1

−βj + (−1)k
(
2k

k

) 2k∑
j=0

−γj .

If this coefficient is non-zero, then by Theorem 4 we are done. Thus, assume it is zero.

We repeat the above procedure for the placement Q with the one lonely queen at (α0, β0) by

defining a similar polynomial f4(x, y), this time with a line of slope −1 through the lonely

queen, as follows.

12



Let

f4(x, y) = (x+ y − δ0)
2k∏
j=1

(x− αj)(y − βj)(x− y − γj)(x+ y − δj)

for suitable constants αj , βj , γj , δj .

By repeating the above procedure or, perhaps more simply, by noting the symmetries between

f3(x, y) and f4(x, y), the coefficient Cf4(4k, 4k) on x4ky4k in f4(x, y) is

Cf4(4k, 4k) = (−1)k
(
2k

k

) 2k∑
j=1

−αj + (−1)k
(
2k

k

) 2k∑
j=1

−βj + (−1)k
(
2k

k

) 2k∑
j=0

−δj .

If this coefficient is non-zero, then by Theorem 4 we are done. Thus, assume it is zero.

We have now reached the following system of linear equations:

Cf1(4k, 4k) = 0, Cf2(4k, 4k) = 0, Cf3(4k, 4k) = 0, Cf4(4k, 4k) = 0. (1)

Next we generate four additional linear equations via some geometric and combinatorial obser-

vations.

Consider the lonely queen located on square (α0, β0): the values of α0 and β0 determine the

values of γ0 and δ0 as follows. The line of slope +1 that goes through the square (α0, β0) has

equation

y − β0 = 1(x− α0), x− y − (α0 − β0) = 0

and the line of slope −1 that goes through the square (α0, β0) has equation

y − β0 = −1(x− α0), x+ y − (α0 + β0) = 0.

As a result, we have

α0 − β0 − γ0 = 0, (2)

α0 + β0 − δ0 = 0. (3)

Now consider the other 4k queens of Q\Q′ (i.e., those that are not lonely). For each such queen

there exists an α ∈ {α1, . . . , α2k} and β ∈ {β1, . . . , β2k} that give her coordinates. The line of

slope +1 that goes through the square (α, β) has equation

y − β = 1(x− α), x− y − (α− β) = 0

and the line of slope −1 that goes through the square (α, β) has equation

y − β = −1(x− α), x+ y − (α+ β) = 0.

13



As a result, we have γ = α−β for some γ ∈ {γ1, . . . , γ2k} and δ = α+β for some δ ∈ {δ1, . . . , δ2k}.
As each such diagonal line is defined by two queens, upon considering the 4k equations deriving

from the −1-slope lines each element of {γ1, . . . , γ2k} occurs twice in this set of equations;

similarly, in the 4k equations deriving from the +1-slope lines each element of {δ1, . . . , δ2k}
occurs twice. Thus, we can write the following:

∑
Q∈Q\Q′

(α− β) = 2
2k∑
i=1

γi, (4)

and

∑
Q∈Q\Q′

(α+ β) = 2

2k∑
i=1

δi. (5)

The restrictions of Case 2 give that each queen in Q \ Q′ is contained in both a vertical line

and a horizontal line. As a result, each α ∈ {α1, . . . , α2k} and each β ∈ {β1, . . . , β2k} appears

twice on the left side of each of Equation 4 and Equation 5. This enables us to rewrite the left

side of Equations 4 and 5 to obtain

2

2k∑
i=1

αi − 2

2k∑
i=1

βi = 2

2k∑
i=1

γi, (6)

and

2
2k∑
i=1

αi + 2
2k∑
i=1

βi = 2
2k∑
i=1

δi. (7)

We may scale and rewrite Equations 6-7 as

2k∑
i=1

αi −
2k∑
i=1

βi −
2k∑
i=1

γi = 0, (8)

and

2k∑
i=1

αi +
2k∑
i=1

βi −
2k∑
i=1

δi = 0. (9)

At this point, we have now generated a homogeneous system of eight linear equations - these are

Equations 1, 2, 3, 8, 9 - in the variables α0, β0, γ0, δ0,
∑2k

j=1 αj ,
∑2k

j=1 βj ,
∑2k

j=1 γj ,
∑2k

j=1 δj . For
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notational convenience we set ω := (−1)k
(
2k
k

)
and express these equations using the following

augmented matrix.

[A 0] =

α0 β0 γ0 δ0
∑2k

j=1 αj
∑2k

j=1 βj
∑2k

j=1 γj
∑2k

j=1 δj



ω 0 0 0 ω 0 ω/2 ω/2 0

0 ω 0 0 0 ω ω/2 ω/2 0

0 0 ω 0 ω −ω ω 0 0

0 0 0 ω ω ω 0 ω 0

1 −1 −1 0 0 0 0 0 0

1 1 0 −1 0 0 0 0 0

0 0 0 0 1 −1 −1 0 0

0 0 0 0 1 1 0 −1 0

Guassian elimination yields the following row reduced 8× 8 coefficient matrix:

A ∼

α0 β0 γ0 δ0
∑2k

j=1 αj
∑2k

j=1 βj
∑2k

j=1 γj
∑2k

j=1 δj



1 0 0 0 0 0 0 1

0 1 0 0 0 0 0 1

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 2

0 0 0 0 1 0 0 −0.5

0 0 0 0 0 1 0 −0.5

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0

We see that the null space of A is spanned by the following vector,[
1 1 0 2 −0.5 −0.5 0 −1

]⊺
.

Note, for a vector x not in the null space, at least one entry of Ax is nonzero. If this nonzero entry

is among the first 4 entries, then at least one of Cf1(4k, 4k), Cf2(4k, 4k), Cf3(4k, 4k), Cf4(4k, 4k)

is nonzero, a contradiction to Theorem 4. If this nonzero entry is among the latter 4 entries,

then it contradicts a relationship we found in one of Equations 2, 3, 8, 9.

The vectors in the null space of A imply that the lonely queen has coordinates (s, s) for s ∈
{−2k, . . . , 2k}, so the lonely queen is on the line y = x, i.e. the ‘back-diagonal’ of the chessboard.

If we rotate the placement by 90-degrees counter-clockwise, then the placement we obtain

satisfies the conditions of Case 2 and has the lonely queen on the ‘forward-diagonal’, i.e., on
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4 Z0ZQZQZ0Z
3 0Z0Z0Z0Z0
2 Z0Z0Z0Z0Z
1 QZ0Z0Z0ZQ
0 Z0Z0L0Z0Z
-1 QZ0Z0Z0ZQ
-2 Z0Z0Z0Z0Z
-3 0Z0Z0Z0Z0
-4 Z0ZQZQZ0Z

-4 -3 -2 -1 0 1 2 3 4

Figure 3: A placement of 10 queens on a 9 × 9 board which corresponds to the zero vector in

Nul A. Sqaures marked with a cross indicate those squares for which the additional placement

of a queen would not yield three-in-a-line.

the line y = −x. Applying all of the previous arguments to this new placement shows that the

lonely queen must be on the back-diagonal. Thus, the lonely queen is at the center, i.e., she

has coordinates (0, 0). This implies that the only vector x in the null space of A which we need

to be concerned with is the zero vector. Thus,

α0, β0, γ0, δ0,
2k∑
j=1

αj ,
2k∑
j=1

βj ,
2k∑
j=1

γj ,
2k∑
j=1

δj = 0. (10)

With the location information provided by Equation 10 and the restrictions of Case 2, we now

turn to a combinatorial and geometric argument to finish the proof.6

Let U ⊆ Bn be the set of squares left uncovered by those defining lines of Q of slope 0 or ∞
(and recall that the lonely queen does not define a line). Notice that U defines a rectangular

sub-board. For any index i ∈ {−(n−1)
2 , . . . , n−1

2 } (respectively j ∈ {−(n−1)
2 , . . . , n−1

2 }) let Ci =

{(i, ℓ) ∈ U : −(n−1)
2 ≤ ℓ ≤ n−1

2 } (respectively Rj = {(ℓ, j) ∈ U : −(n−1)
2 ≤ ℓ ≤ n−1

2 }). That is,

Ci is the set of squares of U in column i and Rj is the set of squares of U in row j. Let a < b be

the minimum and maximum indices, respectively, for which Ci ̸= ∅. Define a′ < b′ analogously

for the sets Rj . The number of the Ci and Rj that are nonempty is n−2k = 4k+1−2k = 2k+1.

The 8k squares that form the set Ca ∪Cb ∪Ra′ ∪Rb′ will be referred to as the perimeter of U .

6Figure 3 is an example of a placement satisfying Equation 10 yet is not good.

16



U

Ca

Ra′

Cb

Rb′

a b

a′

b′

(a, a′) (b, a′)

(b, b′)(a, b′)

0

0

2k−2k

2k

−2k

Figure 4: The 8k squares that form the perimeter of U and some covering lines.

Without loss of generality, we may assume b − a ≥ b′ − a′ as otherwise we may rotate the

placement by 90◦; also, note that b − a ≥ b′ − a′ ≥ 2k. Consider the case that b − a > b′ − a′

(i.e. the inequality is strict, U is rectangular but not square). In this case, there are at least

4k + 1 (and at most 4k + 2) empty squares of Ca ∪ Cb, each of which must be covered by a

line of slope ±1. However, each such line can cover at most one of these squares. As there are

4k such lines, we fall short of being able to cover each such square. So, we may conclude that

b− a = b′ − a′.

If the lonely queen were to occupy a square in Ca (that is, a = 0), then all vertical lines defined

by Q would be to the left of center contradicting that
∑2k

i=1 αi = 0. A similar contradiction

would be reached if the lonely queen were to occupy a square in Cb (that is, b = 0): all vertical

lines defined by Q would be to the right of center contradicting that
∑2k

i=1 αi = 0. Thus, the

squares of Ca ∪Cb are empty of queens. Likewise, the squares of Ra′ ∪Rb′ are empty of queens.

Thus, the perimeter of U is empty of queens.

Consider the 8k squares that form the perimeter of U as shown in Figure 4. As the perimeter

of U is empty of queens, each of these squares must be covered by a line of slope ±1. Such

a line can cover at most 2 such squares. With a total of 4k diagonal lines (2k of slope +1

and 2k of slope −1) and 8k squares, each diagonal line must cover 2 squares. This forces

the −1-slope diagonal covering the squares (a, b′) and (b, a′) and forces the +1-slope diagonal

covering the squares (a, a′) and (b, b′) to exist. Also, a −1-slope line that covers a square of

Ca \ {(a, a′), (a, b′)} must also cover a square of Ra′ \ {(a, a′), (b, a′)}; likewise, a −1-slope line

that covers a square of Cb \ {(b, a′), (b, b′)} must also cover a square of Rb′ \ {(a, b′), (b, b′)}.
Also, a +1-slope line that covers a square of Ca \ {(a, a′), (a, b′)} must also cover a square

of Rb′ \ {(a, b′), (b, b′)}; likewise, a +1-slope line that covers a square of Cb \ {(b, a′), (b, b′)}
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must also cover a square of Ra′ \ {(a, a′), (b, a′)}. Suppose that there are p lines of slope −1

covering squares of (Ca \ {(a, a′), (a, b′)}) ∪ (Ra′ \ {(a, a′), (b, a′)}). The remaining 2k − 1 − p

lines of slope −1 cover the squares of (Cb \ {(b, a′), (b, b′)}) ∪ (Rb′ \ {(a, b′), (b, b′)}), leaving

4k− 2− 2(2k− 1− p) = 2p squares of this set uncovered, with p squares in Cb \ {(b, a′), (b, b′)}
and p squares in Rb′ \ {(a, b′), (b, b′)}. These squares must be covered by +1-slope lines, for an

additional 2p lines of slope +1. These 2p lines together with the +1-slope diagonal covering

(a, a′) and (b, b′) give a total of 2p+1 such lines, which is an odd number of such lines. However,

we said that the number of lines of slope +1 is 2k, which is even, and this contradiction finishes

the proof.

4 Concluding remarks

4.1 Placements that correspond to the zero vector

When n = 8k + 1 we can describe some placements that correspond to the zero vector in Nul

A as follows. Select k squares with coordinates (x1, y1), . . . , (xk, yk) such that these meet the

following conditions: 0 < xi, yi ≤ 2k, yixi
< 1, the values x1, y1, . . . , xk, yk are distinct and for

any i ̸= j we have yi
xi

̸= yj
xj
. Next consider ‘folding’ the board across the x−axis, then folding

it across the y−axis, and finally folding it along the line y = x. Consider the 8 squares that

‘stack’ on top of a selected square and place a queen in each of these. Do this for each selected

square. We have now placed 8k queens. Finally, place a lonely queen at (0, 0), for a total of

8k+1 queens. It is easy to check that this placement is in Nul A. From a geometric perspective,

the placement will look like k octagons that are ‘nested’ and centered at (0, 0). The placement

given in Figure 3 is such a placement derived from this scheme where n = 9 and the set of

initial selected squares consists of one square with coordinates (4, 1); it is one of six possible

placements for n = 9 via this scheme.

When n = 5 there are no placements that meet the conditions of Case 2 since a queen in Q\Q′

forces the existence of four other queens and together with the lonely queen the placement

would have at least 6 > n queens. When n = 8k + 5 we have not found any placements that

correspond to the zero vector in Nul A.

4.2 Other cases to consider

When n = 4k + 3, we also believe that m3(n) ≥ n + 1. At this point of our investigations,

we have not been able to establish this lower bound. However, there are some sub-cases for

which we can establish this improved lower bound: we sketch the proof here by following the
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polynomial method template provided in Case 1 of the proof of Theorem 2. By considering a

good placement Q of size at most 4k + 3 on Bn with at most 2k defined lines of slope ±1, the

polynomial of degree 8k + 4

g(x, y) =
2k+2∏
j=1

(x− αj)(y − βj)
2k∏
j=1

(x− y − γj)(x+ y − δj)

can be constructed so as to vanish on all squares of the chessboard yet has a non-zero coefficient

on the monomial x4k+2y4k+2 by the Binomial Theorem. Thus, by Theorem 3 we reach a

contradiction. This approach will settle all cases where q′ ≥ 2 and some others. However, one

particularly challenging sub-case that we cannot resolve is when q′ = 0 and the number of lines

defined by Q is maximized (i.e. there are 2k + 1 lines defined by Q in each of the four slopes).

In this sub-case, one might consider the following polynomial

h(x, y) =

2k+1∏
j=1

(x− αj)(y − βj)(x− y − γj)(x+ y − δj).

A leading monomial suitable for an application of the Combinatorial Nullstellensatz is again

x4k+2y4k+2. However, this monomial has the same coefficient as the same monomial in

x2k+1y2k+1(x2−y2)2k+1, which is zero. Thus, a polynomial method approach seems problematic.

At the same time, the combinatorial approach that comes towards the end of Case 2 in the proof

of Theorem 2 seems problematic for the following reason. In such a placement, there will be

up to four queens that are neither lonely nor in a defining line of each possible slope. Gaining

information about the coordinates of these queens appears difficult and it could be that these

particular queens are located on the perimeter of U .

Turning to a different set of cases: there are small cases of n even where it has been established

that m3(n) = n+ 1. From Table 1, we see that these values are n = 8, 14, 16, 20, 22, 24. There

is no discernible pattern to us.

Recently, Di Stefano, Klavz̆ar, Krishnakumar, Tuite and Yero [4] have extended Gardner’s

problem to graph theory. This, too, looks like an interesting line of inquiry.
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