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Abstract

A 1976 question of Martin Gardner asked for the minimum size of a placement of queens
on an n X n chessboard that is maximal with respect to the property of ‘no-3-in-a-line’. The
work of Cooper, Pikhurko, Schmitt and Warrington showed that this number is at least n
in the cases that n # 3 (mod 4), and at least n — 1 in the case that n = 3 (mod 4). When
n > 1 is odd, Gardner conjectured the lower bound to be n + 1. We prove this conjecture
in the case that n = 1 (mod 4). The proof relies heavily on a recent advancement to the

Combinatorial Nullstellensatz for zero-sum grids due to Bogdan Nica.
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1 Introduction.

The journal Scientific American was the home to Martin Gardner’s Mathematical Games col-
umn for over 25 years. In one such column in 1976, he gave an intriguing question in extremal
combinatorics. Gardner asked for the minimum number of counters one can put on an n X n
chessboard so that upon the addition of one more counter, there are three in a line and there
was not three in a line prior to the addition (see Gardner [6], Chapter 5, pg. 71). This is called
the minimum no-3-in-a-line problem. We might allow for ‘line’ to be a straight line of any
slope. In this case, we point the reader to the recent work of Aichholzer, Eppstein, and Hainzl

[1]. However, in this paper we examine when ‘line’ refers only to orthogonals and diagonals (as

*Department of Mathematics, Middlebury College, Middlebury, VT 05753.
TDepartment of Mathematics, Middlebury College, Middlebury, VT 05753. Supported in part by Fulbright

Austria. Corresponding author: jschmitt@middlebury.edu.
tDepartment of Mathematics, Texas A&M University, College Station, TX 77843-3368.



-4 3 -2 -1 0 1 2 3 4

Figure 1: An example of a maximal placement with 10 queens on a 9 x 9 board.

was also done in [3]); this is the queens version of the problem since it properly relates to how

a queen is permitted to move in a game of chess.

Consider Figure 1, which shows a 9 x 9 chessboard with a placement of 10 queens with no three
in a line. This is a maximal placement since if we add one more queen to any vacant square
we will create three in a line. For example, an additional queen placed in the top left corner
produces three in a line along the main diagonal. There are no placements of nine or fewer
queens on the 9 x 9 board, making the one given of minimum size (where size of a placement

is the number of queens in the placement).

A history of the queens version problem is given in [3]'. Here we offer a brief summary of known

results. Cooper, Pikhurko, Schmitt and Warrington [3] gave the following.

Theorem 1. [Cooper, Pikhurko, Schmitt, Warrington [3]] For n > 1, the answer to Gardner’s
no-3-in-a-line queens version problem is at least n, except in the case when n is congruent to 3

modulo 4, in which case one less may suffice.

A simple combinatorial proof in the case of n even was given, though this only provided a lower
bound of n —1 when n is odd. To obtain the full result, the proof of Theorem 1 relied on Alon’s

Combinatorial Nullstellensatz (reproduced here as Theorem 3).>

Let ms(n) denote the answer to Gardner’s no-3-in-a-line queens version problem on an n x n

!The published version of this paper contains an editorial error in the abstract. The arxiv version 2 corrects

this error.
2Alon’s seminal work [2] contains many applications of this theorem, and these have served as a huge inspi-

ration to many, including ourselves. This inspiration continues into this present paper.



n 10 11 12 13 14 15 16 17 18
ms(n) 10 12 12 14 15 16 17 18 18

n 19 20 21 22 23 24 25 26 27
ms(n) 20 21 22 23 24 25 26 26 28

Table 1: All known values of ms(n).

chessboard. Gardner knew the precise value of mg(n) for small values of n, and a few more
precise values were given in [3]. Subsequently, Rob Pratt [10] framed the problem as an integer
linear programming problem and Don Knuth [8] brought the power of SAT-solvers to bear on
the problem. Their results are cumulatively stated as an entry in the On-line Encyclopedia of
Integer Sequences [11, A219760]. All values for which m3(n) is known precisely are given in
Table 1.

The data given in Table 1 suggested to us that for n odd and n > 3 that we should have
ms(n) > n + 1; Gardner posited the same [5]°. We prove the conjecture in the case that n is

congruent to 1 modulo 4 as our main result.

Theorem 2. For n congruent to 1 modulo 4 and n > 5, we have ms(n) > n + 1.

The proof of our main result relies on a mixture of the polynomial method, combinatorial
arguments and linear algebra, some of which are similar to those found in [3]. However, a new,
key ingredient is a recent strengthening of Alon’s Combinatorial Nullstellensatz due to Bogdan
Nica [9]. Before stating Nica’s theorem, we recall Part II of the Combinatorial Nullstellensatz

(i.e., the Non-vanishing Corollary).

Theorem 3. [Combinatorial Nullstellensatz, Theorem 1.2 [2]] Let F' be an arbitrary field, and

let f = f(z1,...,2,) be a polynomial in Flxy,...,z,]. Suppose the degree deg(f) of f is

t;

S, ti, where each t; is a non-negative integer, and suppose the coefficient of [[;—, z;* in f is

nonzero. Then, if Si,...,Sy, are subsets of F with |S;| > t;, there are s1 € S1,...,8, € Sy, so
that f(s1,...,8n) # 0.

We say that a subset S of a field F' is a zero-sum if the sum of the elements in S is the zero of

the field. In the case that each of the S; is a zero-sum subset of the field, Nica [9] showed that

3In a typed letter that Martin Gardner wrote to John H. Conway dated 2 June 1975, he wrote, “It would be

nice if the minimum for all odd n were n + 1, and for all even n, n or n + 2.”



the same conclusion in Theorem 3 holds under a slightly weaker degree restriction placed upon

the degree of the polynomial. Nica’s result is as follows.

Theorem 4. [Combinatorial Nullstellensatz for Zero-sum Grids, [9]] Let F' be an arbitrary
field, and let f = f(x1,...,2y,) be a polynomial in Flx1,...,x,]. Suppose the degree deg(f)
of fis 1+ > " t;, where each t; is a non-negative integer, and suppose the coefficient of
| xf’ in f is nonzero. Then, if S1,...,Sy are zero-sum subsets of F' with |S;| > t;, there are
S1 € S1,...,8, € Sy so that f(s1,...,5n) # 0.

This Nullstellensatz for Zero-sum Grids is, in fact, a particular case of a more expansive theorem
that we won’t discuss here. Roughly, it says that we may relax the degree constraints on the
polynomial to reach the same conclusion of the Combinatorial Nullstellensatz whenever the
grid is “structured”, see [9]. As far as we know, the proof of Theorem 2 represents the first
application of this particular generalization of the Combinatorial Nullstellensatz [9] outside of
that paper. It is interesting to us whenever a generalization of Alon’s Nullstellensatz is truly

needed for a combinatorial problem, as is the case for our main result.

This paper is organized as follows. In Section 2 we give the necessary definitions and a sketch
of the proof of Theorem 2. In Section 3 we prove Theorem 2. In Section 4 we provide some
further remarks and also include insights into the difficulty of showing ms(n) > n + 1 for the

case when n is 3 modulo 4.

2 Definitions and notation

We adopt many of the definitions and notation originally used in [3], with one important
exception. Let the infinite square Z-lattice be called a chessboard and its vertices be called
squares. A board B is a finite subset of the chessboard. For n odd, let B,, denote the board
[—252, 25d] x [—25E, 2220 A square of B, will be known by the coordinates (z,y) of its
corresponding vertex. Since we take up the queens version of the problem, we restrict our lines
to having one of the following slopes: 0,+1, —1, or co. These lines contain vertices of the lattice
and when we write line we mean a line of this type. A subset S of the infinite square lattice
will be called a placement of queens where there is a queen on each corresponding square of the
chessboard. The size of a placement S is given by |S|. Two queens of a placement Q define a
line if they lie on the same row, column or diagonal. The set of all collinear pairs of queens of

Q are the set of lines that Q defines. A line is said to cover a square if the coordinates of the

square is in the zero locus of the line. A placement is called good if it is maximal with respect

4This is the key difference to the set-up as compared to that of [3] as we now are considering a zero-sum grid,

thus facilitating the use of Theorem 4.



Figure 2: An example of a good placement with one lonely queen on a 5 x 5 board.

to the property of ‘no-3-in-a-line’; that is, a good placement does not have 3 collinear queens
and any proper super-set of it does. A lonely queen is one that is not collinear with any other
queen. We illustrate a placement with a lonely queen in Figure 2, where there exists one lonely

queen in the topmost row (i.e., she has coordinates (0, 2)).

We now sketch the proof of Theorem 2. We will consider a good placement Q of size at most
4k + 1. The proof will divide into two cases, which roughly depend on the number of lonely
queens. In the first case, when the number of lonely queens is not one, when ¢ < 4k + 1 or when
the number of lines defined by @ is not maximized, Q will define a set of lines and together these
lines (and perhaps some additional lines) will be used to construct a polynomial that vanishes
on the squares of the chessboard. However, we will be able to show that the coefficient on a
leading monomial of this polynomial, which is of ‘small degree,’” is non-zero, thus obtaining a
contradiction to Alon’s Combinatorial Nullstellensatz. (The proof in the first case is essentially
that found in [3] for the proof of Theorem 1.) The second case, when the number of lonely
queens is one, ¢ = 4k + 1 and the number of lines defined by Q is maximized, is more involved.
In this case, Alon’s Nullstellensatz will be insufficient. Like in the previous case, we use the set
of lines defined by Q to construct several polynomials. For each of the four possible slopes of
a line passing through the lonely queen, we define a polynomial so that it vanishes on all the
squares of the chessboard. For each polynomial, we calculate the coefficient of an appropriate
monomial, which is in terms of the coordinates of the lonely queen and sums of the intercepts of
the defining lines of Q. To compute this coefficient requires nothing more sophisticated than the
Binomial Theorem. If one of these four coefficients is non-zero, then we obtain a contradiction
to Nica’s Combinatorial Nullstellensatz for Zero-sum Grids. If each of these four coefficients
is zero, then, together with some geometric and combinatorial arguments that yield additional
equations, we will be able to construct a homogeneous system of linear equations whose solution
yields the location of the lonely queen to be centered on the board (i.e., she has coordinates

(0,0)) along with some other attributes of the placement. This structural information allows



for a combinatorial argument that finishes the proof.

3 Proof of Main Theorem

PROOF OF THEOREM 2

Let n =4k +1 and k > 1. Let Q be a good placement on B,, with size ¢ = |Q| < 4k + 1. Let
Q' denote the (possibly empty) subset of lonely queens in Q. Let |Q'| = ¢’. We work towards

a contradiction.

Case 1: ¢ #1, ¢ < 4k + 1, or ¢ = 1 and some queen(s) that is not lonely participates in

defining fewer than 4 lines.

We will give a polynomial f(x,y) of total degree 8k so that f(z,y) = 0 for each square (z,y) €

B,,. This will lead to a contradiction of the Combinatorial Nullstellensatz.’

We will define f as a product of linear factors. We first consider the set of lines defined by Q.
Since the placement Q is good, every unoccupied square of B, is in the zero locus of at least
one of these lines. For each lonely queen Q; € Q' we will ‘artificially’ define a new line that
covers the square occupied by @);. Such an artificial line will receive a slope of either +1,0 or
0o. We make the choice so as to distribute the slopes as evenly as possible. Every occupied

square is in the zero locus of at least one artificial line or one line defined by Q.

For each of the four possible slopes there are at most L%J lines of that slope defined by Q and
at most {qz/-| artificial lines of that slope. If ¢’ # 1 or if ¢ < 4k + 1, then Lq_TdJ + {qz/-| < 2k. If

¢ = 1 and some queen(s) that is not lonely participates in defining fewer than 4 lines, then one
of the four possible slope directions has at most 2k — 1 lines and we define a new line through
the lonely queen to have that slope. If there are fewer than 2k lines of a particular slope, we
add new lines so that there are 2k lines in total for each possible slope as this will facilitate an

application of Theorem 3.

Let £L={L1,...,Lgk} be the set of 8k lines and let [; = 0 be the equation in variables z and y
defining L;. We then define

8k
i=1
Notice that the polynomial f(z,y) = 0 for every (z,y) € B, as every unoccupied square is

covered by a line that O defines and every occupied square is covered by an artificial line or a

line defined by Q. As f(z,y) is the product of 8k linear factors, the total degree of f(z,y) is

This idea is originally to be found in [3] and it is in the latter case that new ideas are presented.



8k. By grouping the factors in f according to slope, we may express f as

2k

fla,y) =[] - a)y-B)a—y—y)(z+y—15)

Jj=1

for suitable constants «j, 8,7;,0;. The leading monomials of f(xz,y) are the same as that of
g(z,y) = 2%y?* (22 —4?)?*. The Binomial Theorem yields the coefficient of the top-degree term

x4 to be j:(zkk) — this coefficient is nonzero.

By applying Theorem 3 to f(z,y), where t; = to = 4k and S; = Sy = {2k, ..., 2k}, we find
s1 € S1, 82 € Sy for which f(s1,s2) # 0, a contradiction.

Case 2: ¢ = 4k + 1, ¢ = 1 and all other queens participate in defining a line of each of the

four possible slopes.
As we did in Case 1, we employ the polynomial method; this time we will apply Theorem 4.

We start by constructing a polynomial f; := fi(x,y) of total degree 8k + 1 that vanishes on
each square (x,y) € B,. The polynomial f; will be a product of linear factors. We will take
all linear factors that arise from the set of lines defined by Q. Since the placement Q is good,
every unoccupied square of B, is in the zero locus of at least one of the lines defined by Q. As
given by the restrictions of the case, there is one lonely queen in Q" which is not on any defining
line. For this one lonely queen Q € Q' we artificially define a new line that passes through the
square occupied by (). While we are free to choose any one of the four possible slopes for this
one line, at this point in the proof we choose slope co. Every occupied square is covered by at

least one of these lines.

For each of the four possible slopes there are exactly % = 2k lines of that slope defined by
Q and precisely one artificial line of slope co. (Unlike in Case 1, we never need to define any

further lines.)

Let £L={L1,...,Lgk+1} be our set of 8k + 1 lines and let I; = 0 be the equation in variables x
and y defining L;. We then define

8k+1

filz,y) = H l; € Rz, y].
i=1

Note that the polynomial fi(z,y) = 0 for every (x,y) € B, as every unoccupied square is on a
line defined by Q and every occupied square is on an artificial line or a line defined by Q. By
construction, the total degree of f is 8k + 1. Let (ag, 5p) denote the square occupied by the

lonely queen. By grouping the factors in f; according to slope, we may express fi as

2k

fi(@,y) = (z—ao) [[(x — ay)(y = B)) (@ —y —v)(z +y — 5)

=1



for suitable constants «a;, 8;,7;, 0;.

If can we conclude that the coefficient of the term z**y** is nonzero, then we may apply

Theorem 4 to fi(x,y), where t; = to = 4k and Sy = So = {2k, ..., 2k} (zero-sum sets), to
obtain that there are s; € S1, s2 € Sy such that fi(s1,s2) # 0, thus obtaining a contradiction.

We thus ‘expand’ fi(x,y) and ‘collect’ like terms so that we might determine the coefficient
of z*¥y**. Since we are only interested in the coefficient on this term, we focus our analysis
only on it. Note that this term has degree one less than the degree of fi. So, to obtain such
a monomial in the expansion, from the 8k + 1 linear factors, we must choose the z-variable 4k
times, the y-variable 4k times and thus some constant once. We think of choosing that constant

first and so partition our analysis based upon whether the constant that we have chosen is some

aj, Bj,7; or 6;.

1. Choose some «; first for some 0 < 5 < 2k.
The remaining factors with their constant terms removed (since we can’t choose them)

are:
{L‘Qky2k(l’ _ y)%(x + y)Qk‘

This equals
2k o
x2ky2k(x2 o y2)2k — kay2k Z < , >($2)€(_y2)2k—€'
=0

The only choice of ¢ which yields the desired monomial is ¢ = k, which gives a coefficient
of (Qkk)(—l)k . This is the contribution for each ;. Thus, we have a total contribution to

the coefficient of the desired monomial of (—1)’“(2:) Z?io —ay.

2. Choose some f3; first for some 1 < j < 2k.
The remaining factors with their constant terms removed (since we can’t choose them)

are:

x%ﬂy%_l(:c _ y)%(x + y)Qk_

This equals
2k o
$2k+1y2k_1($2 _ y2)2k — $2k+1y2k_1 Z < / >($2)€(_y2)2k—2'
=0

There is no choice of £ which yields the desired monomial, which is true for each 8;. Thus,

we have a total contribution to the coefficient of the desired monomial of 0.

3. Choose some v; first for some 1 < 5 < 2k.



The remaining factors with their constant terms removed (since we can’t choose them)

are:
x2k+1y2k(x _ y)Zkfl(‘,L, + y)Qk

This equals

2k—1

- 2k —1 11—
2R+ 2k( +y)(x2 _y2)2k 1 _ x2k+1y2k(:v+y) Z < , >($2)€(_y2)2k 1-¢
=0
2k—1
= 2k+2 2k Z <2k£_ 1> (l’ ) ( y2)2k—1—f

=0
2k—1

4 2k+1 2k+1 Z <2k— 1) (.TJ ) ( y2)2k—l—€.

Only in the first of the two summands is there a choice of ¢ which yields the desired
monomial; it is £ = k—1, which gives a coefficient of (zk 1)( 1)*. This is the contribution

for each ;. Thus, we have a total contribution to the coefficient of the desired monomial
2k—1\ 2k
of (_1)k( k-1 ) Zj:l =5

4. Choose some ¢; first for some 1 < j < 2k.

The remaining factors with their constant terms removed (since we can’t choose them)

are:
£E2k+1y2k($ _ y)2k(l‘ + y)2k—1.

This equals

2k—1 2% — 1
x2k+1y2k(x—y)(x2 _y2)2k—1 _ 2k:+1 2k: Z ( ) ) ( y2)2k—1—£
=
2k—1
2k —1
— 2k+2 2k Z ( , >($ ) ( y2)2kflf€

2k—1

2k‘+1 2k+1 Z <2k - 1) (LL“ ) ( y2)2kflff'

Only in the first of the two summands is there a choice of ¢ which yields the desired
monomial; it is £ = k—1, which gives a coefficient of (2kk_—11) (—1)%. This is the contribution
for each ;. Thus, we have a total contribution to the coefficient of the desired monomial

of (_1)k(2kk__11) Z?il —0;.

The sum of these four contributions is the coefficient C/1(4k, 4k) on x**y* in fi(z,y). Tt is

O (4k,4k) = (—1)’“(2:) ik: —aj + (—1)k<2kk__11> i_” += <2k ; 1> Z o

J=0



If this coefficient is non-zero, then by Theorem 4 we are done. Thus, assume it is zero.

We repeat the above procedure for the placement Q with the one lonely queen at (ag, 5p) by

defining a similar polynomial fa(z,y), this time with a line of slope 0 through the lonely queen,

as follows.
Let
2k
Fox,y) = (y = Bo) [ [ (= — o)y — Bj) (= —y —vj) (@ +y — 65)
j=1

for suitable constants «;, 8j,7;,0;.

By repeating the above procedure or, perhaps more simply, by noting the symmetries between
fi(z,y) and fao(z,y), the coefficient C/2(4k, 4k) on 2*y** in fo(z,y) is

2k

ot an) = (- (%) i‘)—ﬂj w0 () i—w P () S

If this coefficient is non-zero, then by Theorem 4 we are done. Thus, assume it is zero.

We repeat the above procedure for the placement Q with the one lonely queen at (ag, 5p) by
defining a similar polynomial f3(x,y), this time with a line of slope +1 through the lonely

queen, as follows.

Let
2k

f3(z,y) = (@ =y —0) [[ (= = aj)ly = Bi) (& —y =) (@ +y — &)

Jj=1

for suitable constants a;, 8j,7;, 0;.

As above, we ‘expand’ f3(z,y) and ‘collect’ like terms so that we might determine the coefficient
of z*¥y**. Since we are only interested in the coefficient on this term, we focus our analysis
only on it. Note that this term has degree one less than the degree of f3. So, to obtain such
a monomial in the expansion, from the 8k + 1 linear factors, we must choose the z-variable 4k
times, the y-variable 4k times and thus some constant once. We think of choosing that constant

first and so partition our analysis based upon whether the constant that we have chosen is some

aj, Bj,7; or 6;.

1. Choose some «; first for some 1 < 5 < 2k.
The remaining factors with their constant terms removed (since we can’t choose them)

are:

$2k_1y2k(l’ _ y)2k+1(a: + y)Qk.

10



This equals

2k

$2k_1y2k(£5 _ y)($2 _ y2)2k — CL‘Qk_lka(.’E _ y) Z <2€k> (xQ)Z(_y2)2k:—Z

=0
2k o
— $2ky2k Z < , > ($2)€(_y2)2k—€
=0
2k o
_x2k—1y2k+1 Z < , >($2>£(—y2)2k_£.
=0

Only in the first of the two summands is there a choice of ¢ which yields the desired
monomial; it is ¢ = k, which gives a coefficient of (2kk )(—1)]‘3 . This is the contribution for

each «;. Thus, we have a total contribution to the coefficient of the desired monomial of
2k\ 2k
(_1)k ( k ) Zj:l Q.

. Choose some 3; first for some 1 < j < 2k.
The remaining factors with their constant terms removed (since we can’t choose them)

are:
x2ky2k:71(x o y)2k+1(x + y)Qk

This equals

2k
kaka—l(x _ y)($2 _ y2)2k — 2k; 2k; 1 Z < ) y2)2k—€

=0

L 2kl 2k 12 <2k> )t
2k _
.fC2ky2k Z ( > y2)2k 8.

Only in the second of the two summands is there a choice of ¢ which yields the desired
monomial; it is £ = k, which gives a coefficient of (—1) (2:) (—1)*. This is the contribution

for each ;. Thus, we have a total contribution to the coefficient of the desired monomial
k1 (2k\ 2k
of (1)1 (%) X521 —B;-

. Choose some 7, first for some 0 < j < 2k.

The remaining factors with their constant terms removed (since we can’t choose them)

are:
{L‘Qky2k(l’ _ y)2k(ac + y)2k

11



This equals
2k 2%
x2ky2k(ﬂ§2 o y2)2k — 1‘2ky2k Z ( / )(x2)é(_y2)2k—€.
£=0

The only choice of ¢ which yields the desired monomial is £ = k, which gives a coefficient
of (%f)(—l)k . This is the contribution for each ~;. Thus, we have a total contribution to
the coefficient of the desired monomial of (—1)’“(2,5) Z?io -

4. Choose some ¢; first for some 1 < j < 2k.

The remaining factors with their constant terms removed (since we can’t choose them)

are:

I2ky2k(ﬂf . y)2k+1(.’£ + y)2k—1.
This equals

2k—1
- 2k —1 —1—
kaQQk(.Z‘ _ y)Q(xZ _ y2)2k 1 _ kaka(xZ — 20y + yQ) Z ( , >(1,2)Z(_y2)2k; 14

=0

2k—1 2% — 1
_ x2k+2y2k Z ( ' )(x2)€<_y2)2k—1—é
=0
2k—1

2k —1
_2$2k+1y2k+1 ez% < ) >(x2)€(_y2)2k1€

2k—1

2k — 1
2k, 2k+2 2\0,  2\2k—1—¢
w3 (]

Amongst the three summands, there is a choice of £ = k — 1 in the first, no choice in
the second and a choice of ¢ = k in the third. This yields a coefficient of (—1)k(2kk:11) +
(—1)k1 (le;l) = 0. This is the contribution for each ¢;. Thus, we have a total contribution
to the coeflicient of the desired monomial of 0.

The sum of these four contributions is the coefficient C¥3(4k, 4k) on z%y** in f3(z,y). Tt is

i\ 2~ o1\ 2k o1\ 2

f (L 1\k o 1\k+1 A (_1\k .

cfarar) = 0F () X o 0 () s+ 0 () s
j=1 7j=1 7=0

If this coefficient is non-zero, then by Theorem 4 we are done. Thus, assume it is zero.

We repeat the above procedure for the placement Q with the one lonely queen at (ag, 5p) by
defining a similar polynomial fy(z,y), this time with a line of slope —1 through the lonely

queen, as follows.

12



Let
2k

Falz,y) = (@ +y —60) [ [(e = ay)(y = Bi) @ —y —7p) (@ +y = ))

j=1

for suitable constants a;, 8;,7;, 0;.

By repeating the above procedure or, perhaps more simply, by noting the symmetries between
f3(z,y) and f4(z,y), the coefficient CF+(4k, 4k) on z**y** in fy4(z,y) is

o 2k o 2k o 2k

f. — (_1)k 4 (—1)F _B. 4 (—1)F _5.

Cli(4k,4k) = (-1) <k>z aj + (1) <k>z Bj + (-1) <k)z 5;.
j=1 7j=1 7=0

If this coefficient is non-zero, then by Theorem 4 we are done. Thus, assume it is zero.

We have now reached the following system of linear equations:

CTi(4k, 4k) = 0,C'2(4k, 4k) = 0, CT3 (4k, 4k) = 0, CT2(4k, 4k) = 0. (1)

Next we generate four additional linear equations via some geometric and combinatorial obser-

vations.

Consider the lonely queen located on square (ag, 5p): the values of ag and Sy determine the
values of vy and Jy as follows. The line of slope +1 that goes through the square (ag, 5p) has

equation
y—Bo=Uzr—ap), z—y—(a—pBo)=0
and the line of slope —1 that goes through the square (g, Sy) has equation

y—PBo=—-1r—-ay), x+y—(ag+ o) =0.

As a result, we have

ag — Bo — v =0, (2)
ap + Bo — oo = 0. (3)

Now consider the other 4k queens of Q\ Q' (i.e., those that are not lonely). For each such queen
there exists an « € {ay,...,a} and B € {f1,..., B2} that give her coordinates. The line of
slope +1 that goes through the square («, 5) has equation

y—-B=1lz—-a), z-y—(a—p)=0
and the line of slope —1 that goes through the square («, 8) has equation
y—pB=-1lx—a), z+y—(a+p)=0.
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As aresult, we have v = a—f for some y € {71,...,7} and § = a+ for some 6 € {d1,...,dox}.
As each such diagonal line is defined by two queens, upon considering the 4k equations deriving
from the —1-slope lines each element of {vi,...,79r} occurs twice in this set of equations;
similarly, in the 4k equations deriving from the +1-slope lines each element of {d1,...,dox}

occurs twice. Thus, we can write the following:

2k
Yo (@=p)=2> (4)
=1

QeQ\Y’

and

2k
> (a+8)=2) s (5)
=1

QeQ\Q’

The restrictions of Case 2 give that each queen in Q \ Q' is contained in both a vertical line
and a horizontal line. As a result, each a € {aq,...,a9;} and each g € {f1,..., B2} appears
twice on the left side of each of Equation 4 and Equation 5. This enables us to rewrite the left

side of Equations 4 and 5 to obtain

2k 2k 2k
2 @i =2y Bi=2) v (6)
i=1 =1 =1

and
2k 2k 2k
=1 =1 =1

We may scale and rewrite Equations 6-7 as

2% 2% 2%
Y=Y 8-> =0, (8)
i=1 i=1 i=1

and
2% 2% 2%
Zai—FZﬁi—Z(Si:O- 9)
i=1 i=1 i—1

At this point, we have now generated a homogeneous system of eight linear equations - these are

Equations 1, 2, 3, 8, 9 - in the variables «yg, 39, Y0, 00, Z?Zl aj, Z?il By, Z?il Vi Z?il d;. For

14



notational convenience we set w := (—1)k(2kk) and express these equations using the following

augmented matrix.

a Bo v do Z?il aj Z?il B; Z?il i Z?il 0;
w 0 0 w 0 w/2 w/2 0
0 w 0 0 w w/2 w/2 0
0 0 w 0 w —w w 0 0
A 0] = 0 0 w w w 0
1 -1 -1 0 0 0 0 0
1 1 —1 0 0 0
0 0 0 1 -1 -1 0 0
| 0 1 1 0 -1 0

Guassian elimination yields the following row reduced 8 x 8 coefficient matrix:

Q
o
&
2

>
o

Z?il @ Z?il Bj Z?L Vi E?il 5j_
0 0 0 1
1
0
2
—0.5
—0.5
0
0

o

o O O O o o o
o O O o O O
o O O o o ~ o O
o O O O = O o o©
S O O = O O O
S O B O O O O
o =R O O O O O

We see that the null space of A is spanned by the following vector,

)
[1 102 —05 —05 0 —1} .

Note, for a vector x not in the null space, at least one entry of Ax is nonzero. If this nonzero entry
is among the first 4 entries, then at least one of C/1(4k, 4k), C/2(4k, 4k), C/3 (4k, 4k), CI* (4k, 4k)
is nonzero, a contradiction to Theorem 4. If this nonzero entry is among the latter 4 entries,

then it contradicts a relationship we found in one of Equations 2, 3, 8, 9.

The vectors in the null space of A imply that the lonely queen has coordinates (s, s) for s €
{—2k, ..., 2k}, so the lonely queen is on the line y = z, i.e. the ‘back-diagonal’ of the chessboard.
If we rotate the placement by 90-degrees counter-clockwise, then the placement we obtain

satisfies the conditions of Case 2 and has the lonely queen on the ‘forward-diagonal’, i.e., on
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%

-4 3 -2 -1 0 1 2 3 4

Figure 3: A placement of 10 queens on a 9 x 9 board which corresponds to the zero vector in
Nul A. Sqaures marked with a cross indicate those squares for which the additional placement

of a queen would not yield three-in-a-line.

the line y = —z. Applying all of the previous arguments to this new placement shows that the
lonely queen must be on the back-diagonal. Thus, the lonely queen is at the center, i.e., she
has coordinates (0,0). This implies that the only vector x in the null space of A which we need

to be concerned with is the zero vector. Thus,

2k 2k 2k 2k
a076077076072aj7Zﬂj727j725j:0' (10)
7=1 j=1 7=1 j=1

With the location information provided by Equation 10 and the restrictions of Case 2, we now

turn to a combinatorial and geometric argument to finish the proof.’

Let U C B, be the set of squares left uncovered by those defining lines of Q of slope 0 or oo
(and recall that the lonely queen does not define a line). Notice that U defines a rectangular
sub-board. For any index i € {#, e ”T_l} (respectively j € {#, el ”T_l}) let C; =
{(1,0) e U : # < ¢ < 251} (respectively R; = {(¢,§) € U : # < ¢ < 1Y) That is,
C; is the set of squares of U in column ¢ and R; is the set of squares of U in row j. Let a < b be
the minimum and maximum indices, respectively, for which C; # (). Define a’ < b’ analogously
for the sets 7;. The number of the C; and R; that are nonempty is n—2k = 4k+1—-2k = 2k+1.

The 8k squares that form the set C, U C, U R, U Ry will be referred to as the perimeter of U.

SFigure 3 is an example of a placement satisfying Equation 10 yet is not good.
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2k
y | @) Ry (b, V)
U
Cq G
0
[l,
(a, o) Far (, )
—2k
—2k @ 0 b 2k

Figure 4: The 8k squares that form the perimeter of U and some covering lines.

Without loss of generality, we may assume b — a > V' — a’ as otherwise we may rotate the
placement by 90°; also, note that b —a > b — a’ > 2k. Consider the case that b —a > b —d’
(i.e. the inequality is strict, U is rectangular but not square). In this case, there are at least
4k + 1 (and at most 4k 4+ 2) empty squares of C, U Cj, each of which must be covered by a
line of slope +1. However, each such line can cover at most one of these squares. As there are
4k such lines, we fall short of being able to cover each such square. So, we may conclude that
b—a=0V—d.

If the lonely queen were to occupy a square in C, (that is, a = 0), then all vertical lines defined
by Q would be to the left of center contradicting that 21221 a; = 0. A similar contradiction
would be reached if the lonely queen were to occupy a square in Cy (that is, b = 0): all vertical
lines defined by Q would be to the right of center contradicting that 21251 «; = 0. Thus, the
squares of C'y U C} are empty of queens. Likewise, the squares of R, U Ry are empty of queens.

Thus, the perimeter of U is empty of queens.

Consider the 8k squares that form the perimeter of U as shown in Figure 4. As the perimeter
of U is empty of queens, each of these squares must be covered by a line of slope +1. Such
a line can cover at most 2 such squares. With a total of 4k diagonal lines (2k of slope +1
and 2k of slope —1) and 8k squares, each diagonal line must cover 2 squares. This forces
the —1-slope diagonal covering the squares (a,b’) and (b, a’) and forces the +1-slope diagonal
covering the squares (a,a’) and (b,b’) to exist. Also, a —1-slope line that covers a square of
Co \ {(a,d’), (a,b')} must also cover a square of Ry \ {(a,a’), (b,a’)}; likewise, a —1-slope line
that covers a square of Cy \ {(b,d’), (b,0')} must also cover a square of Ry \ {(a,b’),(b,V')}.
Also, a +1-slope line that covers a square of C, \ {(a,d’),(a,b')} must also cover a square
of Ry \ {(a,V),(b,b')}; likewise, a +1-slope line that covers a square of Cy \ {(b,a’), (b,b')}
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must also cover a square of Ry \ {(a,d’), (b,a’)}. Suppose that there are p lines of slope —1
covering squares of (C, \ {(a,d’), (a,b)}) U (Rux \ {(a,d’),(b,a’)}). The remaining 2k — 1 —p
lines of slope —1 cover the squares of (Cy \ {(b,d’), (b,0)}) U (Ry \ {(a,b'),(b,0')}), leaving
4k — 2 — 2(2k — 1 — p) = 2p squares of this set uncovered, with p squares in Cj, \ {(b,a’), (b,V')}
and p squares in Ry \ {(a,b’), (b,0')}. These squares must be covered by +1-slope lines, for an
additional 2p lines of slope +1. These 2p lines together with the +1-slope diagonal covering
(a,a’) and (b,b') give a total of 2p+1 such lines, which is an odd number of such lines. However,
we said that the number of lines of slope +1 is 2k, which is even, and this contradiction finishes

the proof.

4 Concluding remarks

4.1 Placements that correspond to the zero vector

When n = 8k + 1 we can describe some placements that correspond to the zero vector in Nul
A as follows. Select k squares with coordinates (r1,%1), ..., (g, yx) such that these meet the
following conditions: 0 < x;,y; < 2k, % < 1, the values z1,91,...,xk, yr are distinct and for

£ Zx"—] Next consider ‘folding’ the board across the z—axis, then folding
i J

any i # j we have
it across the y—axis, and finally folding it along the line y = z. Consider the 8 squares that
‘stack’ on top of a selected square and place a queen in each of these. Do this for each selected
square. We have now placed 8k queens. Finally, place a lonely queen at (0,0), for a total of
8k—+1 queens. It is easy to check that this placement is in Nul A. From a geometric perspective,
the placement will look like k octagons that are ‘nested’ and centered at (0,0). The placement
given in Figure 3 is such a placement derived from this scheme where n = 9 and the set of
initial selected squares consists of one square with coordinates (4,1); it is one of six possible

placements for n = 9 via this scheme.

When n = 5 there are no placements that meet the conditions of Case 2 since a queen in Q \ Q’
forces the existence of four other queens and together with the lonely queen the placement
would have at least 6 > n queens. When n = 8k 4+ 5 we have not found any placements that

correspond to the zero vector in Nul A.

4.2 Other cases to consider

When n = 4k + 3, we also believe that ms(n) > n + 1. At this point of our investigations,
we have not been able to establish this lower bound. However, there are some sub-cases for

which we can establish this improved lower bound: we sketch the proof here by following the
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polynomial method template provided in Case 1 of the proof of Theorem 2. By considering a
good placement Q of size at most 4k 4+ 3 on B,, with at most 2k defined lines of slope %1, the
polynomial of degree 8k + 4

2k+2 2k
g(z,y) = [[@—ap)-8) [[(=—y—)a+y—35))
=1 =1

can be constructed so as to vanish on all squares of the chessboard yet has a non-zero coefficient

on the monomial x4*+2q4k+2

by the Binomial Theorem. Thus, by Theorem 3 we reach a
contradiction. This approach will settle all cases where ¢’ > 2 and some others. However, one
particularly challenging sub-case that we cannot resolve is when ¢’ = 0 and the number of lines
defined by Q is maximized (i.e. there are 2k + 1 lines defined by Q in each of the four slopes).

In this sub-case, one might consider the following polynomial

2k+1
hz,y) = ] @ =)y = B)(x -y — 1)z +y - 6)).

j=1

A leading monomial suitable for an application of the Combinatorial Nullstellensatz is again

$4k+2 4k+2

Y . However, this monomial has the same coefficient as the same monomial in

w2kl 2kt 1 (2 9 2)2k+1 which is zero. Thus, a polynomial method approach seems problematic.
At the same time, the combinatorial approach that comes towards the end of Case 2 in the proof
of Theorem 2 seems problematic for the following reason. In such a placement, there will be
up to four queens that are neither lonely nor in a defining line of each possible slope. Gaining
information about the coordinates of these queens appears difficult and it could be that these

particular queens are located on the perimeter of U.

Turning to a different set of cases: there are small cases of n even where it has been established
that mg(n) = n + 1. From Table 1, we see that these values are n = 8,14, 16, 20, 22,24. There

is no discernible pattern to us.

Recently, Di Stefano, Klavzar, Krishnakumar, Tuite and Yero [4] have extended Gardner’s

problem to graph theory. This, too, looks like an interesting line of inquiry.
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