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Abstract

We investigate the maximum number of edges in a graph with a prescribed number of 1-
factors. We also examine the structure of such extremal graphs.
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1 Introduction

Let G be a graph with n vertices. Throughout we assume that n is an even integer. A 1-factor of
a graph G is a spanning 1-regular subgraph of G. Let Φ(G) denote the number of 1-factors in G.

The problem of determining the number of 1-factors in graphs with certain properties has been
studied by several researchers (see, e.g., [1, 2, 3, 7]). Here we are interested in the maximum number
of edges in a graph with a prescribed number of 1-factors.

We denote the complete graph on t vertices by Kt. We will extensively use the following graph
operations. The union G1∪G2 of graphs G1 and G2 with disjoint vertex and edge sets is the graph
with V (G1) ∪ V (G2) and E(G1) ∪ E(G2). The join of graphs G1 and G2, written G1 ∨G2, is the
graph obtained from G1 ∪G2 by adding the edges {xy : x ∈ V (G1), y ∈ V (G2)}.

It was shown by Hetyei (cf. [6]) that the maximum number of edges in an n-vertex graph G with
exactly one 1-factor (i.e. Φ(G) = 1) is n2

4 . The n-vertex extremal graph Hn, that is the graph with
exactly one 1-factor and n2

4 edges, is unique. For n = 2 it is K2 and for n ≥ 4 we can define it
recursively as Hn = K1 ∨ (Hn−2 ∪K1). We refer to this result as Hetyei’s Theorem. To simplify
notation, we let h(G) be the graph obtained from G by adding one vertex v adjacent to all vertices
of G and then adding one more vertex u adjacent only to v.

The aim of this article is to present some results on the size and structure of graphs when Φ(G) is
a fixed integer larger than 1. We denote the maximum number of edges in an n-vertex graph with
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precisely p 1-factors by f(n, p); otherwise f(n, p) = 0 if there is no n-vertex G with Φ(G) = p. For
example, Hetyei’s Theorem says that f(n, 1) = n2

4 for all positive even n. Quite surprisingly, in
general the function f(n, p) is not monotonic in p (cf. Remark 2.6). This irregular behavior makes
this function more interesting (and also more difficult) to examine.

In this article, we precisely determine all nonzero f(n, p) for small values of p. Moreover and more
importantly, we describe all extremal graphs with exactly two or three 1-factors.1

2 Graphs with a small number of 1-factors

We start with a simple lemma.

Lemma 2.1 If f(n, p) > 0, then f(n + 2, p) ≥ f(n, p) + (n + 1). Consequently, if f(n, p) ≥ n2

4 + c,

then f(n + 2, p) ≥ (n+2)2

4 + c.

Proof. Let Gn be an extremal graph of order n with Φ(Gn) = p. Define recursively Gn+2 = h(Gn).
Note that Φ(Gn+2) = Φ(Gn) = p. Hence,

f(n + 2, p) ≥ |E(Gn+2)| = |E(Gn)|+ (n + 1) = f(n, p) + (n + 1),

as required.

Now we define an auxiliary family of graphs {F4, F6, . . . }. Let K4 − e denote the graph obtained
from K4 by deleting one edge. Let F4 = K4 − e and denote by t and u the two vertices of K4 − e
with degree 3. Let Hn be the unique extremal graph such that Φ(Hn) = 1 (cf. Introduction). For
n ≥ 6, let Fn be the graph (K4 − e) ∪Hn−4 together with all the edges joining each of t and u to
all of V (Hn−4). Note that Fn is a graph of order n with

|E(Fn)| = 5 +
(n− 4)2

4
+ 2(n− 4) =

n2

4
+ 1

and Φ(Fn) = 2.

Now we determine the maximum number of edges in graphs with precisely two 1-factors. Moreover,
we also describe all such graphs. Some ideas of the proof of the next theorem come from [5].

Theorem 2.2 If n is even and n ≥ 4, then f(n, 2) = n2

4 + 1; otherwise f(n, 2) = 0. Furthermore,
for every n ≥ 4 there are precisely n−2

2 extremal graphs defined recursively for 1 ≤ i ≤ n−2
2 as

follows:

Gi
n =

{
Fn for i = n−2

2 ,

h(Gi
n−2) for 1 ≤ i ≤ n−4

2 .

Proof. As K4 − e has two 1-factors, we have f(4, 2) ≥ 42

4 + 1, and so the lower bound follows from
Lemma 2.1.

Now we show the upper bound. Let G be an n-vertex graph with Φ(G) = 2. Denote the edge
sets of the two distinct 1-factors by R and B, viewed as red edges and blue edges, respectively,

1Recently, we learned that in [4] the authors refined some of our results. (The previous version of our manuscript
was available online.)

2



with R = {r1, r2, . . . , rn/2} and B = {b1, b2, . . . , bn/2}. If R ∩ B is nonempty, then we will reorder
the edges so that ri = bi, for 1 ≤ i ≤ k − 1, where k = |R ∩ B| + 1. As R 6= B, we must have
k − 1 ≤ n/2− 2.

The edges rk, . . . , rn/2 and bk, . . . , bn/2 must form red-blue alternating even cycles in G. If there
exists t such cycles, then Φ(G) ≥ 2t. Thus t = 1, and we denote this unique red-blue cycle by C.

Between any two edges of r1, . . . , rk−1 there can exist at most two edges, and if there are two, then
they are incident. If this were not the case, then we would contradict that Φ(G) = 2. For the same
reason, for any 1 ≤ i ≤ k− 1 there are at most two edges between ri and any edge of C, and if two
such edges exist they must be incident. Now consider x, y ∈ V (C) and xy 6∈ E(C). We call xy an
even chord if C \ {x, y} consists of two paths of even order, otherwise xy is an odd chord. Between
any two red edges of C is at most one odd chord. When |V (C)| ≥ 6 no even chord may exist, as
otherwise a third 1-factor exists using the edge xy, the 1-factors of each even path of C \ {x, y}
and r1, . . . , rk−1. Together these statements imply that only one edge may exist between any two
red edges of C. In this way we have considered all edges with both ends in V (C).

We thus obtain,

|E(G)| ≤

r1,...,rk−1︷ ︸︸ ︷
(k − 1) +

ri to rj︷ ︸︸ ︷
2
(

k − 1
2

)
+

r1,...,rk−1 to C︷ ︸︸ ︷
(k − 1)(n− 2k + 2) +

E(C)︷ ︸︸ ︷
(n− 2k + 2) +

Chords of C︷ ︸︸ ︷(
n/2− k + 1

2

)
= −1

2

(
k − n− 1

2

)2

+
n2

4
+

9
8

= g(k). (1)

Clearly, on the set {0, . . . , n
2 −1} the function g(k) is maximized when k = n/2−1. Thus |E(G)| ≤

g(n/2− 1) = n2/4 + 1. This establishes the upper bound.

We now show the structure of the extremal graphs G. If the bound is to be achieved, then R
and B intersect on n/2 − 2 edges and V (C) induces K4 − e. Also, the graph induced by the set
V (G)\V (C) must be the graph Hn−4, with the edges of the unique 1-factor r1, . . . , rn/2−2. Denote
by vi and wi the endpoints of ri in such a way that v1, . . . , vn/2−2 and w1, . . . , wn/2−2 are a clique
and an independent set, respectively. We may also reorder the edges and assume that d(vi) < d(vj)
for 1 ≤ i < j ≤ n/2− 2.

If the bound is to be achieved, then there must exist four edges between a given ri and V (C) for
1 ≤ i ≤ n/2− 2. There are only two possible configurations of these edges; all others contradict
Φ(G) = 2. These two configurations are: (1) all four edges are incident with vi, or (2) two edges
are incident with wi, two edges are incident with vi and these four edges are incident only with
(two) vertices of degree 3 in the K4 − e. Note that we cannot have ri with configuration type (1)
and rj with configuration type (2) for i < j. Otherwise, the vertices vi, vj , wi, wj and V (C) yield
a new 1-factor (with the edge vjwi). Consequently, a necessary condition for G to be an extremal
graph is that the edges r1, . . . , ri have configuration type (2) and the edges ri+1, . . . , rn/2−2 have
configuration type (1) for some 0 ≤ i ≤ n/2 − 2. Hence, there are at most n/2 − 1 such graphs.
It is easy to see that the n/2 − 1 graphs Gi

n defined in the statement have this form and satisfy
Φ(Gi

n) = 2. This completes the proof.

One can easily generalize the proof of Theorem 2.2 to get the following.

Theorem 2.3 If n is even and at least 4, then f(n, 3) = n2

4 +2; otherwise f(n, 3) = 0. Furthermore,
for each n ≥ 4 there exists a unique extremal graph Gn; for n = 4 we have Gn = K4, and for n ≥ 6
we have Gn = h(Gn−2).
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Proof sketch. Since K4 yields f(4, 2) = 42

4 + 2, the lower bound follows from Lemma 2.1.

Now, let Φ(G) = 3 and let R,B, and Y be the distinct 1-factors of G. As in the proof of Theorem 2.2,
we consider R and B, and first consider the case when C has one even chord if |V (C)| ≥ 6 or two
odd chords if |V (C)| = 4. (If |V (C)| ≥ 6 and C has more than one even chord, then Φ(G) > 3.) In
this case, Y is uniquely determined. Thus, we can again have a restriction on the number of edges
similar to the above, i.e. an amount that is one more than found in the right side of (1). Otherwise,
the chords of C must behave as in the proof of Theorem 2.2, and in at most one instance of the
other pairwise comparisons between some ri and an edge of C that we considered above we may
have three edges present (but still only two edges between ri, rj for 1 ≤ i < j ≤ k − 1). Thus, we
have a restriction on the number of edges that is one more than found in the right side of (1). In
either case, we have

|E(G)| ≤ −1
2

(
k − n− 1

2

)2

+
n2

4
+

17
8

= m(k).

Clearly, on the set {0, . . . , n
2 − 1} the function m(k) is maximized when k = n/2 − 1. Thus

|E(G)| ≤ m(n/2− 1) = n2/4 + 2. This establishes the upper bound.

We now show the structure of the extremal graph. In either case when m(k) is maximized, |V (C)| =
4.

We first eliminate the latter case of yielding any extremal graphs. If equality in the above were to
hold, then it must be that V (C) induces K4−e and that there exists some ri for 1 ≤ i ≤ n/2−2 such
that three edges are present joining it and some edge of C. In addition, there must be two additional
edges joining ri and V (C). A simple case analysis shows that regardless of the arrangement, we
have Φ(G) > 3.

In the former case if the bound is to be achieved, then V (C) induces a K4. Also, the edges
r1, . . . , rn/2−2 must induce Hn−4. Let us call the vertex belonging to ri and the (n/2 − 2)-clique
of this induced graph vi and its partner vertex wi for 1 ≤ i ≤ n/2− 2 — the set {w1, . . . , wn/2−2}
is an independent set of size n/2 − 2. If the bound is to be achieved, then there must exist four
edges joining a given ri and V (C). There is one possible configuration of these edges; all others
contradict Φ(G) = 3. The only configuration is that all four edges are incident with vi. This yields
the result.

The approach taken in the proof of Theorem 2.2 cannot easily be generalized for determining f(n, p)
for p ≥ 4, since the graph induced by 4 or more 1-factors may have structure richer than in the
case when p ≤ 3. In order to find f(n, 4), we have to use a different idea. Unfortunately, the new
approach does not say too much about the structure of extremal graphs.

As a matter of fact, the quantitative parts of Theorem 2.2 and 2.3 can also be derived from the
next lemma.

Lemma 2.4 Let p be a positive integer. If f(n, r) ≤ C for every 1 ≤ r ≤ p, then f(n, p + 1) ≤
C + 1.

Proof. Let G be an n-vertex graph with Φ(G) = p + 1 ≥ 2 and f(n, p + 1) edges. To the contrary,
we will assume that f(n, p + 1) > C + 1. We may find an edge e in G that belongs to at least one
of the 1-factors but not to all of the 1-factors. Now consider G − e. The graph G − e contains r
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Figure 1: The unique 6-vertex graph with precisely four 1-factors and 11 edges.

1-factor(s) for some 1 ≤ r ≤ p and has precisely f(n, p + 1) − 1 > C ≥ f(n, r) edges. This is a
contradiction and establishes the lemma.

Hetyei’s Theorem and Lemma 2.4 immediately imply the following.

Corollary 2.5 For every positive integer p, we have f(n, p) ≤ n2

4 + (p− 1).

Remark 2.6 It would be nice to prove Lemma 2.4 under a weaker condition, namely, assuming
f(n, p) ≤ C only. Unfortunately, the function f(n, p) is not monotonic in p. One can check2 that
f(8, 14) = 20 < 21 = f(8, 12). Thus, in order to proceed in the proof of Lemma 2.4, we have to
assume that f(n, r) ≤ C for 1 ≤ r ≤ p.

In light of Hetyei’s Theorem and Theorems 2.2 and 2.3 achieving the upper bound provided by
Corollary 2.5, one might anticipate that it can always be achieved. We will show this not to be the
case for p ≥ 4.

Theorem 2.7 If n is even and n ≥ 6, then f(n, 4) = n2

4 + 2; otherwise f(n, 4) = 0.

Proof. Let G6 be the graph in Figure 1. Note that Φ(G6) = 4 and |E(G6)| = 11. Consequently,
we have f(6, 4) ≥ 62

4 + 2 and the lower bound follows from Lemma 2.1.

Let G be an n-vertex graph with Φ(G) = 4. We will show that there exists an edge which is
contained in either two or three 1-factors. (Hence, we may proceed in a similar fashion as in the
proof of Lemma 2.4.) Suppose not. Consider the edges which belong to one 1-factor (they must
exist) and denote the subgraph induced by them by H. Consider the union of any two 1-factors.
The edges of these 1-factors that belong to H form the disjoint union of even cycles of girth at
least four, i.e. they form a 2-factor. Consequently, this 2-factor must be a Hamiltonian cycle;
otherwise we contradict Φ(G) = 4. The same holds for the remaining two 1-factors. Hence H
is a 4-regular graph which is the disjoint union of two Hamiltonian cycles. Thus, by a result of
Thomason (Corollary 2.2 in [8]) H (and so G) contains at least 8 Hamiltonian cycles. On the other
hand, the number of Hamiltonian cycles in G cannot exceed

(
Φ(G)

2

)
= 6, since every Hamiltonian

cycle is the union of two distinct 1-factors, a contradiction.

Now we may assume that there exists an edge e in G that belongs to exactly two or three 1-factors.
Consider G−e. The graph G−e contains precisely one or two 1-factor(s) and has exactly |E(G)|−1
edges. Thus, by Hetyei’s Theorem and Theorem 2.2 we obtain |E(G)|−1 ≤ n2

4 +1, as required.

Lemma 2.4 and Theorem 2.7 immediately improve the upper bound from Corollary 2.5.

Corollary 2.8 If p ≥ 4, then f(n, p) ≤ n2

4 + (p− 2).

2The authors used the program nauty provided by B. McKay, see http://cs.anu.edu.au/∼bdm/nauty/.
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p 1 2 3 4 5 6
cp 0 1 2 2 2 3
np 2 4 4 6 6 6

Table 1: f(n, p) = n2

4 + cp for n even and n ≥ np.

With some additional effort, one can generalize previous results and show that f(n, 5) = n2

4 + 2
and f(n, 6) = n2

4 + 3. We omit these proofs since they are more technical and do not introduce any
new ideas. We summarize our quantitative results in Table 1.

3 Open questions

In general, determining the value of f(n, p) for an arbitrary p does not seem to be an easy prob-
lem. Notice that since the complete graph on 2t vertices contains (2t − 1)!! 1-factors, we have
f(n, (2t− 1)!!) ≥ n2

4 + (t2 − t), which is tight for t = 1 and 2. It would be interesting to decide if
this is also tight for any t.

Another intriguing question is to determine if the first inequality in Lemma 2.1 is always tight. If
this would be the case, then f(n, (2t− 1)!!) = n2

4 + (t2 − t).

There is also an interesting asymptotic aspect of function f(n, p). Corollary 2.8 implies that
f(n, p) = n2

4 + O(p). Is the term O(p) optimal? Is it true that f(n, p) = n2

4 + o(p)?
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