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Given a family of graphs F, a graph G is F-saturated if no element
of F is a subgraph of G, but for any edge e in G, some element
of F is a subgraph of G + e. Let sat(n,F) denote the minimum
number of edges in an F-saturated graph of order n.

For graphs G, Hy, ..., Hy, we write that G — (Hy,...,Hy) if
every k-coloring of E(G) contains a monochromatic copy of H; in
color ¢ for some . A graph G is (Hy, ..., Hy)-Ramsey-minimal if
G — (Hy,...,Hy) but for any e € G, (G —e€) /4~ (Hy,...,Hy).
Let Ruin(Hi, ..., Hg) denote the family of (Hy, ..., H;)-Ramsey-
minimal graphs.

In 1987, Hanson and Toft conjectured that
sat(n, Rmin(Kkl, ceey Kkt)) =

(%) n<r
(T;2)+(r—2)(n—r—|—2) n>r,
where r = r(k1,ka,..., k) is the classical Ramsey number for

cliques.

In this paper, we settle the first non-trivial case of Hanson and
Toft’s conjecture for sufficiently large n by showing that sat(n, Rmin (K3, K3)) =
4n — 10 for n > 56. We also undertake a brief investigation of
sat(n, Rmin (K¢, Trn)) where T, is a tree of order m.
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1. Introduction

In this paper we consider only graphs without loops or multiple edges. We let
V(G) and E(G) denote the sets of vertices and edges of G, respectively and
we will let e(G) = |E(G)|. For any vertex v in G, let N(v) and N[v] = N(v)U
{v} denote the neighborhood and closed neighborhoods of v, respectively.
We denote the complement of G by G. Given any two graphs G and H,
their join, denoted GV H, is the graph with V(GV H) = V(G) UV (H) and
E(GVH)=EG)UE(H)U{gh|geV(G), he V(H)}. Finally, for a set
of vertices X in G, let (X)g denote the subgraph of G induced by X.

Given a family of graphs F, a graph G is F-saturated if no element of
F is a subgraph of G, but for any edge e in G, some element of F is a
subgraph of G + e. If F = {H}, then we say that G is H-saturated. The
classical extremal function ex(n, H) is precisely the maximum number of
edges in an H-saturated graph of order n. Erdés, Hajnal and Moon [5]
studied sat(n, H), the minimum number of edges in an H-saturated graph,
and determined sat(n, Kj).

Theorem 1 Let n and t be positive integers such that n > t. Then
t—2
sat(n, Ki) = < 5 ) +(t—=2)(n—t+2).

Furthermore, Ki_o V Fn_Hg is the unique Ki-saturated graph of order n
with minimum size.

For graphs G, Hy, ..., Hy, we write that G — (Hy,..., Hy) if every k-
coloring of F(G) contains a monochromatic copy of H; in color i for some
i. A graph G is (Hy, ..., H)-Ramsey-minimal if G — (Hy, ..., Hy) but for
any e € G, (G—e) 4 (Hy,...,Hy). Let Ryin(Hy, ..., Hi) denote the family
of (Hy,..., Hr)-Ramsey-minimal graphs.

In this paper, we consider sat(n, Rmin(H1, ..., Hy)) for certain choices
of the H;. It is straightforward to show that any graph G such that G —
(Hy,...,H) must contain a Ramsey-minimal subgraph. Therefore, deter-
mining the saturation number for Ryin(Hj, ..., H) is equivalent to deter-
mining the minimum number of edges in a graph G of order n with the
property that G 4 (Hy,...,Hy) but G+ e — (Hy,..., Hy) for any edge e
in the complement of G. In 1987, Hanson and Toft [8] discussed this notion
and made the following conjecture.
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Conjecture 1 Let r = r(ky, ka,..., ki) be the standard Ramsey number for
complete graphs. Then

(g) n<r
Sat(n, Rmin(Kkla s 7Kkt)) =
(T;2)+(r—2)(n—r+2) n>r.

The statement of this conjecture can also be found in [9].

For n > r, the fact that sat(n, Rmin(Kk,, .-, Kg,)) < (7;2) +(r—2)(n—
r + 2) arises from consideration of the graph G = K,V Fn_r+2 which, by
Theorem 1 is the unique K,-saturated graph of minimum size. Consequently,

for any e € G, G + e contains K, and thus G +e — (K,,..., K,).

To see that G 4 (Kk,,...,Kk,), consider the coloring obtained by
cloning a vertex in any edge-coloring of K,_; containing no K}, in color
i. For an example when ki = ko = 3 see Figure 1.

The main result of this paper is that sat(n, Rmin(Ks, K3)) = 4n —
10 for n > 56, settling the smallest non-trivial case of Conjecture 1 for
sufficiently large n. We also undertake an investigation of the parameter
sat(n, Rmin(Kt, T)y)) where T, is a tree of order m.

2. Main Result

We now proceed by giving our main result.

Theorem 2 For n > 56,

sat(n, Rmin(Ks, K3)) = 4n — 10.

Proor: The fact that sat(n, Rmin(K3, K3)) < 4n — 10 follows from the
coloring of K4V K,,_4 described above and pictured in Figure 1.

We therefore aim to prove that sat(n, Rumin(Ks, K3)) > 4n — 10.

Let G be a Ryin (K3, K3)-saturated graph of order n and suppose that
e(@) < 4n — 10. Fix a coloring x of E(G) that contains neither a red nor
blue K3. Throughout the proof, we will attempt to add red or blue edges to
G. We demonstrate that by modifying x (much as Galluccio et al. [7] did
in their paper), we may add an edge without creating a monochromatic K,
violating our assumption that G is Ruyin (K3, K3)-saturated.
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Figure 1: A coloring of K5 with no monochromatic triangles that gives rise
to a Rumin (K3, K3)-saturated graph.

It is convenient to visualize G with respect to the coloring x, and as
such we will frequently refer to the “blue graph” and “red graph”, as well
as the “blue” or “red” degree of a vertex. More formally, let G,¢q and Gppye
denote the subgraphs of G consisting of the edges colored red and blue by
X, respectively. Similarly, for a vertex v in G, d,(v) will denote the number
of red edges incident to v and N,¢q(v) denotes the “red neighborhood” of
v, that is, the set of vertices u such that wv is red. Similarly, let N;..q[v]
denote Nycq(v) Uwv. We define dy(v), Nppye(v) and Nppe[v] in an analogous
manner with respect to the blue graph Gpye. We will refer to a vertex x in
Nyeqa(v) as a red neighbor of v and will also say that the vertices v and z are
red-adjacent.

We now explore the structure of G = Geq U Gpue, and work toward a
contradiction.

Claim 1 The graphs Gyeq and Gppe are connected.

Proor: Without loss of generality, suppose that G,..q is disconnected, and
let A be a component of G,¢q having minimum order. Note that for every
pair of vertices a € A and b € B = G,.q — A, the edge ab must be in Gpyye,
since otherwise we could add a missing edge in red without creating a red
K3. The fact that all of these edges are blue also yields that there are no blue
edges within (A)g and (B)g and hence that both of these (red) subgraphs
are Ks-saturated. Utilizing Theorem 1, it follows that

e(G) > [Al|B] + (|A] + [B| = 2).

Since e(G) < 4n — 10 and n > 56, we conclude that |A| < 3.

Since every edge within B is red and |B| > n — 3, there is some edge
uv not in B. We will add this edge uw, colored blue, to G and then modify
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X to remove any blue triangles. Suppose |A| = 3, and note that since (A)g
is K3-saturated, A = Pj. If we label the vertices of this Ps, in order, with
a1, a9 and ag, then after adding uv in blue, we recolor uai,vas and uas red.
This does not create a monochromatic triangle, and hence contradicts the
assumption that G is Rumin (K3, K3)-saturated. The cases where |A| < 3 are
handled in a similar manner. U

Since G is Ruin (K3, K3)-saturated, the addition of an edge colored red
or blue must create a triangle of that color. The following fact reflects this
observation.

Fact 1 If u and v are nonadjacent vertices in G, then Nypeg(u) N Nyeq(v)
and Nppye(w) N Nyue(v) are both non-empty.

Also note that if a(G) > n —4 then G is a subgraph of K4V K,,_4. Thus
any edge in F(Ky V K,_4) that is not contained in F(G) could be added
to G without destroying the coloring depicted in Figure 1, contradicting the
assumption that e(G) < 4n — 10. This implies the a(G) < n — 4.

For the remainder of the proof, we let v denote a vertex of minimum
degree in G and we let H denote G — N[v]. Fact 1 and the assumption that
e(@) < 4n — 10 imply that 2 < d(v) < 7.

Galluccio, Simonovits, and Simnoyi [7] investigated Rpin (K3, K3)-saturated
graphs, though not just those of minimum size. They gave various construc-

tions of such graphs and various structural results. Useful in establishing
our next claim is the following theorem.

Theorem 3 [7] If G is a Ruin(K3, K3)-saturated graph G, then §(G) > 4.
Claim 2 d(v) > 4.

Proor: Follows immediately from Theorem 3. (]

Let z be a vertex in H and let v/ be a vertex in N(v) N N(x) such that
the edges v'v and v’z are different colors. In this situation, the edge v’z does
not prevent us from inserting the edge xv in either color, so we call such an
edge a wasted edge to N(v). Additionally, say that an edge from x to N(v)
is useful if it is not wasted.

Claim 3 d(v) <5.

ProoF: To begin, suppose that 6(G) = d(v) = 7. Every vertex in H must
have a common red neighbor and a common blue neighbor with v. This
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implies that

e(G) > T+ = (Zd )H))

27+%(7(n—8)+2(n—8)),

which is at least 4n — 10 for n > 38.

Therefore assume that §(G) = d(v) = 6. If the subgraph induced by
N (v) does not contain a red edge, then we can recolor all six edges incident
with v red without a red or a blue K3, which contradicts Claim 1. We could
similarly recolor and obtain a contradiction if the subgraph induced by N (v)
contained no blue edges. Consequently, there must be at least one blue edge
and at least one red edge in the subgraph induced by N(v) and hence at
least eight edges in the subgraph induced by N]v].

Consider a vertex x in H such that |[N(v) N N(z)| = 2. By Fact 1, x
and v must have a common red neighbor r and a common blue neighbor b.

Suppose that the edge br is not red (meaning that it may not be in G at
all).

Recoloring zb red would leave z and v with no blue common neighbor,
so there must be a vertex v, in G that is red-adjacent to both x and b. Note
that since rb is not red, r # v,., so v, € H. We also cannot recolor vb red, so
there must be a vertex ro # r in N,q(v) such that rb is red. Since xry is
not in G, we must not be able to add it to Gpyye. Hence there must be some
vertex vy in H that is blue-adjacent to both x and ro. Note that v, # b, as
rob is red. We can therefore conclude that for every vertex x having exactly
two common neighbors with v, there are two vertices in N(z) — N(v), each
having a wasted edge.

Every vertex in G has degree at least six, and every vertex in H has at
least two edges to N(v). Summing the degrees in G, we get that

2e(G) > 16 +2(n —7) +6(n — 7 +Z Ay () —2) + > _(d(z) -

=8n—40+ Y (dygy (@) —2) + > _(d(x) —
H

H

The vertices v, and v described above each have at least two useful and
at least one wasted edge to N(v), hence they each contribute at least one
to >y (dn(w)(z) — 2). Furthermore, each of these vertices may be used to
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prevent recoloring with respect to a number of choices of x. Since v, and
vp must be adjacent to x, they may prevent recoloring with respect to at
most three choices of « before beginning to contribute to >, (d(x) — 6).
Consequently, if we let no denote the number of vertices in H with exactly
two neighbors in N(v), we get that

2n2
> (g (@) — 2) +Z )= 6) > ==

H

or that

e(G) > 4n—20—|—%.

Since e(G) < 4n — 10, it follows that ny < 29.

There are n — 7 — ngy vertices with three or more neighbors in N(v),
implying that

2¢e(G) >6(n—T)+2(n—"T)+ (n —ng —7) + 16,

which is a contradiction, given that ny < 29 and e(G) < 4n — 10. O

Claims 2 and 3 together imply that §(G) is either four or five. Next, we
eliminate the former possibility.

Claim 4 §(G) =

PROOF: Assume that d(v) = 4 and begin by assuming that Ny.(v) = {b}
and Nyeq(v) = {r1,r2,73}. Note that in order to avoid a monochromatic
K3, some pair of red neighbors of v must be nonadjacent, say r; and rs.
Also note that, by Fact 1, b must be blue-adjacent to every vertex in H.
We may therefore assume that each br; is red since the only red neighbors
of b lie in N,¢q(v), which contains no red edges. Now, since 1 and ry are
nonadjacent, we may recolor the edges vry and wry blue. This forces, by
Fact 1, r3 to be red-adjacent to every vertex x in H. Consequently, H must
be an independent set. Thus H U {v} is an independent set of order n — 4,
a contradiction.

Hence, we may assume that Ny..q(v) = {r1,72}, Npwe(v) = {b1,b2} and
that we cannot recolor the edges incident to v such that G contains no
monochromatic K3 and v is incident to at most one edge of some color. Along
these lines, to prevent us from recoloring vb; red, by must have a red edge
to one of the vertices in N,¢q(v), say r1. Then, to prohibit us from coloring
vry blue, r1bo must be in Gyye. Similarly, we conclude that bore must be in
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Greq and bire must be in Gyue. By Fact 1, every vertex of H must have a
red neighbor in NV,.4(v) and a blue neighbor in Ny, (v). Hence, the addition
of the blue edge 179 and the red edge b1bs cannot create a monochromatic
triangle, so these edges must be present in these colors. Together, this means
that the subgraph induced by N[v] is a complete graph composed of disjoint
monochromatic 5-cycles, vbiraribov in blue and vribibarov in red.

Since N(v) is complete and e(G) < 4n — 10, there must be a vertex z
in H with three or fewer neighbors in N(v). Suppose that dy,(7) = 2,
specifically that xr; is red and xb; is blue. Since r1b; is red, we cannot
recolor xb; red, so we will attempt to recolor xr; blue instead. To prevent
this, there must be a vertex xp, necessarily in H, such that ryx; and xpx are
both in Gpye. Since z;3 has a red neighbor in N,..q(v), xpre must be red. Let
T1,T9,... enumerate all possible choices for z; in GG, and sequentially recolor
x;x red if possible. As we cannot recolor all such edges without forcing a
contradiction, we may assume that xpx cannot be recolored red. This implies
the existence of a vertex y, also in H, such that yz and yz; are both red.
Since xry and xpry are both red, this prohibits y from having a red neighbor
in Nyeq(v), a contradiction.

Suppose then that dy,)(z) = 3, specifically that xb; is blue and that
xby and xr; are both red (so that xby is wasted). We cannot recolor zry
blue, and since r1b; is red, there must be a vertex x; in H such that xyx and
xpr1 are both in Gpyye. Therefore, zpry must be red and, if we enumerate
all possible options for x; as above and sequentially recolor, there must be
some choice of x such that xpz cannot be recolored red. Thus there is a y
in H such that y is red-adjacent to both x; and x and once again y cannot
have a red neighbor in N,..q(v).

Finally, we may assume that = has no wasted edges to N(v), so that
(without loss of generality) xr; and xry are red, while zb; is blue. If we
could recolor xr; blue, then & would have a wasted edge, reducing to the
previous case. Hence there is some vertex x; such that zyx and x,r; are
both blue, and since bir; is red, x must be in H. Now since xb; and bory
are both blue, z; cannot be blue-adjacent to by or by, the final contradiction
necessary to complete the claim. O

Therefore, d(v) = 6(G) = 5.
Claim 5 The vertex v is incident to at least two edges of each color.

PROOF: Suppose otherwise, and let N,eq(v) = {r1,..., 74} and Nppe(v) =
{b}. By Fact 1, b is blue-adjacent to every vertex in H. Moreover, as in the
previous claim, we may assume that each of the edges br; is in Geq-
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Let B denote the subgraph induced by N,..q(v), necessarily a subgraph
of Gyiye, which must be triangle-free and hence is bipartite.

Case 1: Suppose o(B) > 3.

Assume, without loss of generality, that ro,7r3 and r4 are independent
in B. Since we have assumed that b is red-adjacent to each r;, we could
recolor each of vry,vrs and vry blue without creating a blue triangle. This
implies that rq is red-adjacent to every vertex in H and furthermore, since
H C Npjye(b), that H is an independent set. Consequently we could add, in
red, any missing edge from ro,r3 or 74 to H without creating a red triangle,
so all of these edges must be present in G. We conclude that G has at least
5(n — 6) edges, a contradiction for n > 20.

Case 2: Suppose B C Kj 5.

Specifically, let {r1,7r2} and {r3, 4} be independent sets in B. We could
recolor vry and vry blue, so every vertex x in H must have a red edge to one
of r3 or r4. Symmetrically, each  in H must have a red edge to one of rq
or r3. Choose some x in H and assume that x is red-adjacent to r1 and r3
and furthermore that xrs is not in G. The only way we are prohibited from
adding the edge zr9 in blue is if  and r9 have a common blue neighbor. Since
H C Npyjye(b), there are no blue edges in H, so this common blue neighbor
must be in N (v). Specifically r4 must be the common blue neighbor of 2 and
ro. Consequently, every vertex x in H must have four neighbors in N (v).
This implies that

2¢(G) > > d(z) +e(N(v), H)
reH

>5(n—6)+4(n —6) = 9n — 54,
contradicting our assumption that e(G) < 4n — 10 when n > 34. O

For the remainder of the proof of Theorem 2, we will assume that
Npue(v) = {b1,b2} and Nyeg(v) = {r1,72,73}.

Claim 6 Fvery vertex x in H is adjacent to at least three vertices in N(v).

Proor: By Fact 1, each vertex in H is red-adjacent and blue-adjacent to
at least one vertex in N(v). Suppose that = in H is red-adjacent to r;, blue-
adjacent to b; and has no other neighbor in common with v. Suppose first
that byry is not in Gpyye. Note that by Fact 1 we cannot recolor zr; blue, so
there must be some vertex z;, in H that is blue-adjacent to both = and r;.
Then x; cannot be blue-adjacent to by, implying that xybo must be in Gpye.
However, we cannot recolor vr; blue since x has only one red neighbor in
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N (v), so r1 must be blue adjacent to either by or be. Since we assumed r1b;
was not in Gpyye, this implies that r; is blue-adjacent to bo, creating a blue
triangle with xy.

Therefore, we may assume that r1by is blue. We cannot recolor xb; red,
so there must be some vertex y in H that is red-adjacent to both = and
bi. This implies that yby is blue. Once again, let yi,y2,... enumerate all
possible choices of y, and sequentially recolor the edges xy; blue if possible.
As we may not recolor all of these edges, we assume that we have chosen y
so that xy cannot be recolored blue. This implies the existence of a vertex g
in H such that y,y and zy, are both blue. However, as in the above claims,
yp cannot be blue-adjacent to by or by, a contradiction. U

Claim 7 If a vertex x in H has a wasted edge to N(v), then at least one of
the following holds

1. dN(U)(J}) > 4,

2. d(x) > 6 or

3. d(w) =5 and dy(v) = 3. Also, the two vertices in Ny () are adja-
cent and at least one y € Ny (x) has degree at least siz.

PROOF: Let x be a vertex in H with a wasted edge to N(v) and suppose
that conditions (1) and (2) do not hold.

Case 1: Suppose x has a wasted blue edge.

Assume, without loss of generality, that xry is red and both zb; and xro
are blue. Furthermore, we first assume that r1b; is not in Gpjye. We cannot
recolor xry blue, so there must be a vertex x; that is blue-adjacent to both
x and 71. Suppose that x; is in H, and note that if x;b; was blue we would
have a blue K3, so zybs must be in Gyye. Since x has exactly three neighbors
in N(v), the edge vry cannot be recolored blue, so r; must be blue-adjacent
to some vertex in Npje(v). Since r1 and be are both blue-adjacent to xy, we
conclude that r; must be blue-adjacent to b1, contradicting our assumption
that r1b1 is not in Gpye. Hence, we may suppose that x; = ro meaning that
179 is blue.

We cannot recolor vry blue, as ry is the only red neighbor of x. Thus
r1 must have a blue neighbor in Ny, (v), so by assumption r1by must be in
Gpiue- As biby is not in Gypye, the addition of xby to G in blue forces there to
exist a vertex xp that is blue-adjacent to both by and x. Note that xp # ro
since the blue edge r2b2 would create a blue triangle robary, so x, € H.
Similarly, as xrs is not in G the addition of zrs in red forces the existence
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of a vertex y that is red-adjacent to both r3 and x. Again note that y # rq
since there can be no red edge within N,..q(v), soy € H.

By assumption, x has no more neighbors. Therefore, to prohibit the
addition of xbs to G, eq,  and by must have a common red neighbor. Since
r1by was assumed to be blue, this means that ybs is in G,..q and hence that
ybl is in Gblue'

Now we wish to show that d(y) > 6 and dy(,(y) = 3. The latter holds
as we have shown that yrs, yb; and ybs are in G. If y is adjacent to both ry
and rg, then d(y) > 6, so suppose first that y is adjacent to neither 1 nor ry.
To prevent adding either yr; or yro to Gpye, there must be vertices y; and
yo such that y; is blue-adjacent to both r; and y, and ys is blue-adjacent to
both 9 and y. Note that since ri79 is blue, y; # y» and also that ys # by
as z is blue-adjacent to both ry and b;. Then d(y) > 6 and dy,)(y) > 3.
Suppose then that y is adjacent to exactly one of r; or ry. If either yr; or
yry is blue, then as y has no other neighbors, it is not possible for y and
to have a common blue neighbor without creating a blue triangle. The only
remaining possibility is that yro is red, since if yr; was red, zyr; would be
a red triangle. However, then the only blue neighbor of y is b1, and again
it is not possible for y and x; to have a common blue neighbor. We may
therefore conclude that d(y) > 6 and dy ) (y) > 3.

We now show that xpy is in G, so that (3) holds. Suppose otherwise, so
that zpy is not in G. Since we cannot add zpy to Gppye, there must be some
vertex w that is blue-adjacent to each of x; and y. Furthermore, w cannot
be in N(v), as then w would be one of r1, 9 or by, creating the blue triangles
r1boxy, roxpx or bixpx, respectively. Thus w is in H, implying by Fact 1 that
w must be blue-adjacent to either b; or by, which would create blue K3 with
y or xp, respectively. Thus, the claim holds under the assumption that r1b;
is not in Gyjye.

Suppose that xry is red and xb; and zry are blue, but now we also
assume that r1b; is in Gpye. We cannot recolor zb; red, so there must be
a vertex y that is red-adjacent to both x and b;. Since r; is the only red
neighbor of x in N(v), and r1b; is blue, y must be in H. Also, since yb; is
red, ybs must be blue.

As in the previous cases, if we enumerate the possible choices of y and
sequentially recolor, we may assume that we have selected y such that xy
cannot be recolored blue. This implies the existence of a vertex y’ that is
blue-adjacent to both z and y. Note that 3y ¢ H, since that would imply
either 4'by or y'bs is in Gyyye, each of which would lie in a blue K3. Therefore
y' is in N(v), specifically 3y’ = rq, so that yro must be blue. Certainly we
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cannot recolor xre red, as this would destroy the blue common neighbor of
x and y forced above. Hence, there must exist a vertex y” with red edges to
both x and r5. Note that y” cannot be y or any vertex in N (v).

The edge xby cannot be added to Gppye, so there must exist a blue com-
mon neighbor of x and bs. Since d(x) < 6 by assumption, this common
neighbor must be either by or r9. Either case results in a blue triangle (bebjv
or 1obyy respectively), a contradiction.

Case 2: Suppose x has a wasted red edge.

Specifically, assume that xb; and xry are red and xbsy is blue. Again, we
first suppose that the edge bory is not in Gpyye (S0 it is either missing or
red). We cannot recolor xrq blue so there must exist a vertex y € H that is
blue-adjacent to both = and ry. By Fact 1, ¥y must be blue-adjacent to b;.
Since vr; cannot be recolored blue and we have assumed that byry is not in
Giue, there must exist a blue edge from by to r1. This edge forms a blue
triangle with y, a contradiction.

Hence, we may assume bar; is blue. The edge box cannot be recolored
red, so there must exist a vertex g, that is red-adjacent to both x and bs.
Suppose first that y, € H. By Fact 1, y.b1 must be blue. If we again let
Y1,%2, ... enumerate the possible choices for ¥, and sequentially recolor the
edges zy, blue, then the fact we cannot recolor all such edges again allows
us to select y, so that xy, cannot be recolored blue. However, this implies
that there is some vertex in H that is blue-adjacent to both = and y,. Such
a vertex cannot be blue-adjacent to either of by or by, contradicting Fact 1
and completing the claim.

If, instead, ¥, is not in H, then y, = b;. We cannot recolor vby red, so by
must be red-adjacent to some red neighbor of v, say 9. Also, adding rox to
G in blue must create a blue K3, so there must be a vertex y' € H that is
blue-adjacent to both 79 and x. To avoid creating a blue triangle, 1'b; must
be blue.

Now, for some choice of ¥/, 3'ro cannot be recolored red so these two
vertices have a red common neighbor (possibly by). Similarly, ’2 cannot be
recolored red so ¥’ and x must have a common red neighbor (possibly 7).
Since rox is not in G and the addition of r9z in red must therefore create
a red triangle, there must be another vertex y” that is red-adjacent to both
r9 and z. Since y” cannot be 71 or by without creating a red K3, vy’ € H.

Since d(z) = 5, this must account for all of the neighbors of z. We
recolor rov blue since ro has no blue edges to b; or by. However, we still
cannot recolor vby red, so borg must be in G,.q. We have recolored vrs
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blue, but we cannot recolor both vry and vrs blue, so we must have either
rors or r3by in Gpye. Finally, as rsx is not in F(G), r3 and = must have a
common blue neighbor. Note however that x’s blue neighbors are b, which
is red adjacent to r3 and vy’ which if blue-adjacent to r3 would form a blue
triangle. O

We reach a contradiction, and complete the proof of Theorem 2 by care-
fully counting the edges of G. Partition H into the following sets

o Ny={z € H:|N(z)NN(v)
e Ns={ze€eH:|Nx)NNw)| =3
e Ny ={zx€ H:|N(z)NN(v)| =3 and d(z) > 6}.

We require one final claim prior to our final count.

Claim 8 Ifz € H has no wasted edges, then either v € NyUNy or Ng(z)N
(N?f U N4) =+ 0.

ProoF: We may assume x € N3 as otherwise we are done. Suppose first
that  has no wasted edges and is blue-adjacent to by and bs in Npyje(v) and
red-adjacent to r1 in N,.q(v). We cannot recolor vry blue, so 71 must be blue
adjacent to one of by or by, say by. We cannot recolor xbs red, so by and x
must have a common red neighbor y,. Since r1by is blue, this neighbor must
be in H and therefore has a wasted edge to N(v). Then, by Claim 7, either
yr € (N3 U Ny) or there is a vertex y.. € Ny(y,) that has degree at least six
and is adjacent to x. This suffices to demonstrate the claim.

Next, assume that x is blue-adjacent to by in Npe(v) and red-adjacent
to r1 and rg in Nyeq(v). We cannot recolor r1x blue so if 7151 is not in Gpye
there is some vertex y in H that is blue-adjacent to both r; and x. As above,
the desired conclusion would then follow from Claim 7, so we assume that
r1b1 and, symmetrically, rob; are both in Gyj,e. We cannot recolor bz red,
so there must exist a vertex y in H that is red-adjacent to both b; and x.
Once again, Claim 7 yields the desired conclusion. O

Since every vertex in H has at least three edges to N(v) and 6(G) =5,
we get that

> " d(v) > 3(n — 6) + 5(n —6).

veG

Each vertex in N3 and Ny increases this sum by at least one, and we
may improve this bound on ) d(v) as follows.
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D dw) = 3(n—6)+5(n—6)+|NsUNsJ+ > (d(x)—6).
veEG YyENFUN,

Let © := [N3 U Ny| 4+ >_ ey, (d(2) — 6). We claim © > |H|/4.

If [Ny U N4l > |N3|/3, then © > |Nj U Ny4| > |H|/4 since V(H) =
N3 U N3 UNy. Suppose then, that | N5 U Ny| < |N3|/3. In this case, we have
|N3| > 3|H|/4 and |N3 U Ny4| < |H|/4. Since each vertex x € N3 is adjacent
to at least one vertex in N3 U N4, then the number of edges from N3 to
N3 U Ny is at least |N3|.

Since each y € N5 U Ny has at least 3 neighbors in N(v), we have

© = INjUNi|+ > (dly)—6)

> |NJUN|+ (Vo] = 3IN3 U Ny )
. 3 2
> |Ng| —2INg U N 2 SIH| - S| H| = |H/A.

Thus,
H
> d(w) > 3(n—6 )+5(n—6)+%.
veG

We can augment this sum slightly by counting those edges entirely within
Nv]. We cannot recolor any blue edge incident to v red and, also, we cannot
recolor any two red edges incident to v blue. Hence there must be at least
four edges completely within N (v) and thus 9 edges completely within Nv].
Hence

|H]

> d(v) = 3(n —6)+5(n—6) + 1

veG

+ 18,

a contradiction for n > 46. This completes the proof of Theorem 2. [
3. sat(n, Rumin(K¢, Trn))

In this section we determine sat(n, Rmin(K3, P3)) for n at least 11, as a
contrast to Theorem 2. First, we recall a classic result of Chvatal [3], which
states that if T}, is any tree of order m then r(K;, T,,) = (t—1)(m —1) + 1.
If we let color one be “red” and color two be “blue”, then the lower bound
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arises from consideration of (¢ — 1)K,,—; with every edge colored blue and
each edge between the blue cliques colored red. It is well-known that this is
the unique edge-coloring of K(;_1)(—1) with no red K; and no blue Tj,.

Examining the sharpness examples for Theorem 2 and Conjecture 1, it
seems reasonable that the correct value of sat(n, Ruyin(K¢, Tp,)) may arise
from overlapping copies of K(;_1)m—1) and demonstrating an appropriate
coloring. In particular, we obtain the following upper bound.

Proposition 1 Let t,m and n be positive integers and let T be a tree of
order m. Then sat(n, Ruyin(K¢, Thn)) is at most

n(t—2)(m—1)—(t—2)2(m—1)2+<(t B Q)g” N 1)>+Lm"_ 1J <m2_ 1>+<g>

where 7 =n (mod m — 1).

PROOF: Lot Hy = K 12 and let Hy = | 7
sider H = H; V Hs. Color each edge in Hy blue, and partition the vertices
of Hy into t — 2 sets of m — 1 vertices. Color the cliques induced by each
of these sets blue and then color the remaining edges in H; V Hy red. This

coloring contains no red K; and no blue tree of order m.

We now wish to show that H is Ruyin (K¢, Trn)-saturated by demonstrat-
ing that the coloring of H described above is the unique red/blue coloring
of E(H) with no red K; and no blue T,,,. Each copy of K,,,—1 in Hy is joined
to Hy, forming a copy of K(;;,_1)—1)- The uniqueness of Chvatal’s coloring
assures that in any red/blue edge coloring of H that contains no red K; and
no blue T, each of these copies must contain a blue (t — 1)K,,_; with all
other edges red. Consequently, the coloring of each K,, 1 in Hs must be
identical. But then, since every vertex of H;p lies in a blue copy of K,,_1,
none of these vertices can be blue-adjacent to two components of Ho, as
then this coloring of H would contain a blue K,,_1 with a pendant edge,
and hence a blue copy of T},. We therefore conclude that no vertex in H;
lies in a blue K, with any vertex from Hs. This implies that each copy of
K1 in Hy must be colored blue and that every edge from H; to Hy must
be red.

We claim next that the component of order r in Hy must have every
edge colored blue. However, since H; contains a red copy of K;_ o and every
edge from H; to Hs is red, a red edge in this K, would form a red K; in
this coloring of H, a contradiction.

L J K,,—1 UK, and con-
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It remains to show that the addition of any edge, red or blue, to this
coloring of H results in either a red K; or a blue 7}, Note that the only
edges in H connect vertices in Hs, so assume that = and y are nonadjacent
vertices in H. If the edge zy is added in blue, then without loss of generality
x lies in a blue copy of K,,_1 that does not contain y. This blue complete
graph together with the blue edge xy necessarily contains a blue copy of Ty,.
That the addition of xy in red necessarily creates a red K; follows from the
observation that H; contains a red copy of K; o in which every vertex is
connected to x and y by a red edge. U

For instance, if t = m = 3, Chvatal’s coloring is a red Cy with a blue
matching and in Figure 2 we give a Ruyin (K3, P3)-saturated graph arising
from this coloring of Kjy.

Figure 2: A coloring of K4 with no red K3 or blue P; that gives rise to a
Rumin (K3, P3)-saturated graph.

This graph has L%”J — 4 edges and seems like a good candidate for a
Rmin (K3, P3)-saturated graph of minimum size. In fact, we can do slightly
better.

Theorem 4 Forn > 11,

5
sat(n, Ruin(K3, P3)) = {T”J —5.

Prior to proving Theorem 4, we require the following result of Barefoot,
et al.[1].

Theorem 5 Let n > 5 be an integer and let G be a Ks-saturated graph of
order n. Then either G is a complete bipartite graph or 2n — 5 < e(G) <

| o2 |+ 1
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Let G be a graph and let v be a vertex in G. We inflate the vertex v in
G by replacing v with an independent set of vertices and connecting each
of these new vertices to the neighbors of v in G. The next lemma follows
directly from the proof of Theorem 5 given in [1], and is also implied by the
proof of Corollary 3.1 in [4], so we omit the proof here.

Lemma 1 Let G be a 2-connected Ks-saturated graph of order n with ex-
actly 2n — 5 edges. Then G can be obtained by inflating two nonadjacent
vertices of Cs.

We are now ready to prove Theorem 4.

PROOF: As above, suppose we are trying to assure either a red K3 or a
blue P5 and let G be a Ryin( K3, P3)-saturated graph. If there exists an edge
e € (G which is in three different triangles of GG, then the only way to edge-
color these triangles without a red K3 or a blue Pj5 is to color e blue and
the remaining edges red. Hence, we get the following fact which will help us
establish our lower bound on sat(n, Rmin(K3, P3)).

Fact 2 In any red/blue edge coloring of a Rumin(Ks, P3)-saturated graph G
with no red Ksor blue P3, any edge e lying in three or more triangles must
be colored blue.

To establish the upper bound in Theorem 4, consider a copy of C5 with
vertices vy, ..., vs appearing in that order on the cycle. Inflate v; to a set V;
of at least three vertices to obtain a graph of order n > 7 and color all 2n—5
edges of this graph red. Next we add a matching, in blue, that consists of
the edge v9v5 and a maximum matching M amongst the remaining n — 2
vertices that does not include the edge vsvy, as this edge is already present.
Call this graph Gy and note that the coloring given contains no red K3 and
no blue Ps.

It remains to show that Go is Rumin(K3, P3)-saturated, so consider a
red/blue coloring of E(Gp) that contains no red K3 and no blue P3. Note
that the edge v9v5 lies in a triangle with each vertex in V7, so by Fact 2, it
must be colored blue in any coloring with no red K3 or blue P;. This implies
that all of the other edges incident to vo and vz must be colored red. Now we
note that each edge in M — {vyvs} is of the form vsz, vyx or zy for vertices
x,y in V7, which forces each of these edges to be blue, and hence forces the
remaining edges in Gy — M to be red. Thus we have forced the coloring of
G described above, in which the addition of any edge, in red or blue, forces
a red K3 or a blue Ps.
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To establish the lower bound, let G be a Ryin(K3, P3)-saturated graph
on n vertices with the minimum number of edges. Furthermore, consider a
coloring of G containing no red K3 and no blue Ps having the maximum
number of red edges. Notice that if two vertices u and v each have no blue
neighbor, then they must be red-adjacent. Hence, the next fact follows im-
mediately.

Fact 3 There is no set T' of at least three vertices in G each with no blue
neighbors.

As above, let G, and Gy denote the graph induced by the red edges and
the blue edges in G, respectively.

Claim 9 The graph G, is 2-connected.

ProoOF: Note first that G, is connected, as the addition of a red edge
between two components Ry and Ry in G, could not create a triangle, and
hence every edge between R; and Ry would have to be in Gy. This would
imply that every edge connecting a vertex in R; and a vertex in Rs would
be in Gy, creating a blue Ps.

Suppose then that G, had connectivity one, and let v be a cut-vertex
in G,. Let C'; and C be components of GG, — v and suppose that there
is a vertex w in Cj that is not adjacent to v. Let x be any vertex in Cb.
Then the edge wx can either be added in red or changed from blue to red,
contradicting the choice of G in each case.

Hence, we may suppose v is adjacent to all of G, — v implying that G,
must be a star centered at v. Examining G, there must be a blue matching
amongst the vertices of G —wv. Suppose that xy is an edge of this matching. If
we recolor vx blue and zy red, we may then add an edge from x to G—{v, z}
in red, contradicting the assumption that G is saturated. (]

The remainder of the proof is broken into cases based on the parity of
n.

Case 1 n is odd.

First, we claim that G, is maximal triangle-free. If not, we could either
add a red edge to G or recolor a blue edge of G red. Either way, this contra-
dicts our choice of G. Since G, is 2-connected, Theorem 5 yields that G, has
at least 2n — 5 edges. By Fact 3, there must be at most one vertex (since n
is odd) with no incident blue edge. Hence, e(G) > 2n —5+ 2] = |2] — 5,
completing this case.
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Case 2 n is even.

The coloring of G was chosen so that the red graph has as many edges as
possible, so if there are any edges which could be colored either red or blue
without creating a monochromatic K3 or P3, they will be red. Consequently
we may again assume that the red graph is K3-saturated but also, by Fact 3,
that there are at most two vertices with no blue neighbor.

If the blue graph is a perfect matching, then by Lemma 1 and the fact
that Gyeq is 2-connected, e(G) > 2n — 5+ 2 = 2 — 5 completing the
result. Thus, suppose that there is a pair of vertices which are not cov-
ered by the blue matching. These vertices must be joined by an edge e in
red. We therefore assume, since G,qq4 is 2-connected and Kj3-saturated, that
e(Gred) = 2n — 5 and furthermore that there are exactly § — 1 blue edges.
Note that e can be recolored blue without creating a blue Ps.

By Lemma 1, since n > 11, G, must be a copy of C5 with two nonadja-
cent vertices inflated. Consider a C5 with vertices vy, v9,...,v5. Let v1 and
vs be the inflated vertices (as in the structure provided by Lemma 1) and
let V1 and V3 be the corresponding independent sets. The remainder of the
proof is broken into cases based on the location of e in this structure.

If e = vqvs, then since vs is adjacent to every vertex in Vi and V3, v
has no blue neighbor, a contradiction. Suppose then that e = v4as for some
vertex as € V3 (or symmetrically e = vsa; for some a; € V7). We may then
color e blue and add the edge vsas in red without creating a red triangle.
This contradicts the assumption that G was Ruyin (K3, P3)-saturated.

Finally suppose that e = vpa3 for some ag € V3 (or symmetrically e =
vaay for some a; € V7). Since Gyye is a matching saturating all of V(G) —
{v2,a3}, vs must have a blue neighbor a4 in V3. Likewise vy must have a
blue neighbor aj. We may then recolor vsay and vsa) red, vqvs blue, and
add the edge a4a) in blue. This contradicts the assumption that G was
Rumin (K3, P3)-saturated and completes the proof. O

4. Conclusion and Open Problems

In this paper, we have verified the first non-trivial case of Conjecture 1. It

would be of interest to determine non-trivial lower bounds on sat(n, Ruyin (K, , - - -, Kk,))-
For instance, if Conjecture 1 were to hold, a classic result of Spencer [10]

would imply that

2
sat(n, R, i) > (11 o(1)) Y2 k2 n,
e
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where the o(1) term is with respect to k. At this time, we are only able to
show the following.

Claim 10
k—1)%-1
sat(n, Rmin(Kg, Kx)) > %n

PrROOF: It is readily seen that a graph H satisfies H — (Kj, K) if and
only if H contains a Kj-minimal subgraph H '. Let G be a Rpin(Ky, Ki)-
saturated graph. Then, for any edge e € G, G + e contains a Kjp-minimal
subgraph. A result of Burr, Erdés and Lovéasz [2], reproved recently by Fox
and Lin [6], states that the minimum degree of a Kj-minimal subgraph is
at least (k — 1)2. This implies that the minimum degree of G is at least
(k —1)2 — 1, and the result follows. O

In addition to Conjecture 1, one may investigate sat(n, Rmin(G, H)) for
other pairs of graphs. As a starting point, we conjecture that sat(n, Rmin (K¢, Tin))
is the same asymptotically as the bound given in Proposition 1.

Finally, as mentioned above, Galluccio, Simonovits and Simonyi have
obtained a number of results on (not necessarily minimal) Ryin(K3, K3)-
saturated graphs in [7]. The interested reader may wish to investigate the
wealth of interesting and challenging conjectures and open problems posed
in that paper.
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