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Abstract. We consider a problem in extremal graph theory as introduced by
Erdős, Jacobson and Lehel in [3]. That is, given an n-term graphic degree

sequence, for n sufficiently large, we prove that the minimum degree sum

necessary to guarantee a realization containing a t-clique, t ≥ 2, is (t−2)(2n−
t + 1) + 2. The proof involves the notion of an edge exchange, which is well-

known but has not been used in previous approaches to this problem. It is our

hope that the proof will demonstrate the utility of this technique and inspire
new approaches to similar problems.

1. Introduction

Let G be a simple undirected graph, and let V (G) and E(G) denote the vertex
set and edge set of G respectively. We let G denote the complement of G. Denote
the complete graph on t vertices by Kt and let N(v) and d(v) denote the neigh-
borhood and degree of a vertex v in a graph G. Furthermore, if H is a subgraph
of G, let NH(v) denote those neighbors of a vertex v that lie in H. Given any two
graphs G and H we will denote their join by G + H.

A sequence of nonincreasing, nonnegative integers π = (d1, d2, . . . , dn) is graphic
if there is a graph G of order n having degree sequence π. In this case, G is said
to realize π, and we will write π = π(G). If a sequence π consists of the terms
d1, . . . , dt having multiplicities m1, . . . ,mt, we may write π = (dm1

1 , . . . , dmt
t ). We

generally use notation as given in [14] and refer the reader there for any undefined
terms.

1.1. Edge Exchanging. Let G be a realization of a graphic sequence π and let
u, v, u′ and v′ be vertices in G such that uv, u′v′ are edges in G and u′u, v′v are
nonedges in G. Removing the edges uv and u′v′ and replacing them with the
nonedges u′u and v′v results in a realization G′ of π that may or may not be
isomorphic to G. This operation is frequently referred to as an edge exchange, a
2-switch (see [14]) or transfer (see [1] and [13]). The following well-known theorem
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of S.L. Hakimi asserts that this operation is sufficient to navigate between the
realizations of a graphic sequence.

Theorem 1.1. [6] Let π be a graphic sequence, and let G and G′ be realizations of
π. Then there is a sequence of 2-switches, S1, . . . , Sk such that the application of
these switches to G in order will result in G′.

A proof of this result is also given in [1] (pages 153-154) and [14] (page 47).
Recently, an analogous result to that of Theorem 1.1 has been determined for 3-
uniform hypergraphs, see [8].

More generally, let G be a graph of order n. A circuit C = e1e2, . . . , e2` in Kn,
where ei and ei+1 are incident is an alternating circuit if ei ∈ E(G) whenever i is
even and ei ∈ E(G) whenever i is odd. In other words, the edges of C alternate
being “in” and “out” of G. Removing the edges of C from G and adding back the
edges of C from G results in a new graph G′ that has the same degree sequence as
G. We refer to this operation as exchanging the edges of the alternating circuit C,
and we note that a 2-switch is simply the operation of exchanging the edges of an
alternating circuit of length 4.

1.2. Potentially H-graphic Sequences. Let π be a graphic sequence and let H
be a graph. Let σ(π) denote the sum of the terms in π. We say that π is potentially
H-graphic if there is some realization of π that contains H as a subgraph. Define
σ(H,n) to be the smallest even integer m so that every n-term graphic sequence π
with σ(π) ≥ m is potentially H-graphic.

In [3], Erdős, Jacobson and Lehel conjectured that σ(Kt, n) = (t− 2)(2n− t +
1) + 2. The conjecture rises from consideration of the graph K(t−2) + K(n−t+2). It
is easy to observe that this graph contains no Kt, is the unique realization of its
degree sequence and has degree sum (t− 2)(2n− t + 1).

In proving the upper bound, the cases t = 3, 4 and 5 were handled separately
(see respectively [3], [5] and [9], and [10]), and Li, Song and Luo [11] proved the
conjecture true via linear algebraic techniques for t ≥ 6 and n ≥

(
t
2

)
+ 3. We prove

the following (where the bound on n is not best possible).

Theorem 1.2. Let n ≥ 31
2 t2 + 13

2 t + 3 and t ≥ 2 be positive integers. If π is an
n-term graphic sequence with σ(π) ≥ (t − 2)(2n − t + 1) + 2, then π is potentially
Kt-graphic.

To prove Theorem 1.2, we will choose a realization of π that is “close” to having
a t-clique. Under the given conditions on π, we show that a sequence of edge ex-
changes is possible to move from this realization to one which indeed has a t-clique.
This purely graph-theoretic technique of determining when a sequence is potentially
H-graphic has been mostly abandoned in the literature since [13], although another
recent example appears in [4]. In fact, Theorem 1.1 permits us to construct such
a realization using only 2-switches, but it is generally less complicated to exchange
the edges of a longer circuit instead.

The goal of this paper is to use this technique to give a new proof of the Erdős-
Jacobson-Lehel conjecture. It is our hope that this proof will call greater attention
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to the technique of edge-exchanging, with the larger goal of facilitating general
progress on the problem of determining σ(H,n) for arbitrary choices of H.

2. A Proof of the Erdős-Jacobson-Lehel Conjecture Using
Edge-Exchanges

2.1. Preliminaries. For the remainder of the paper, let π = (d1, . . . , dn) be a
fixed nonincreasing n-term graphic sequence with σ(π) ≥ (t − 2)(2n − t + 1) + 2
and n ≥ 31

2 t2 + 13
2 t + 3. In constructing a realization of π that contains a copy of

Kt, the following lemma from [5] will prove useful.

Lemma 2.1. If S is a graphic sequence with a realization G containing H as a
subgraph, then there is a realization G′ of S containing H with the vertices of H
having the |V (H)| largest degrees of S.

In seeking to prove Theorem 1.2, it is therefore logical to attempt to construct
a copy of Kt on those vertices of degree d1, . . . , dt. The next lemma, given in [7],
follows from the well-known Erdős-Gallai [2] criterion for graphic sequences and
serves to establish that π majorizes the degree sequence of Kt. For completeness,
we give the proof of this next result.

Lemma 2.2. [7] If S = (d1, d2, · · · , dn) is a graphic sequence such that σ(S) ≥
(t− 2)(2n− t + 1) + 2 and n ≥ t, then dt ≥ t− 1.

Proof: By way of contradiction, suppose that S is a graphic sequence with σ(S) ≥
(t− 2)(2n− t + 1) + 2 and that S has at most t− 1 terms at least t− 1. Then by
applying the Erdős-Gallai criteria we obtain the following.

n∑
i=1

di =
t−1∑
i=1

di +
n∑

i=t

di

E−G︷︸︸︷
≤ ((t− 1)(t− 2) +

n∑
i=t

min{t− 1, di}) +
n∑

i=st

di

= t2 − 3t + 2 + 2
n∑

i=t

di

≤ t2 − 3t + 2 + 2(n− t + 1)(t− 2)
= (t− 2)(2n− t + 1).

For all n ≥ t, this contradicts the given degree sum and the result follows.�

Before we begin, we give a brief outline of the proof of Theorem 1.2. By induction
we will show π contains a fairly large clique. Using Lemma 2.1, we then show that
this clique can be situated on the vertices of highest degree. After this, we exchange
the edges of alternating circuits to finish building the desired clique. The technical
aspect of the proof is in proving that such edge exchanges are always possible.

2.2. The Proof. The proof of Theorem 1.2 will proceed by induction on t. We
first note that σ(K1, n) = 0 and σ(K2, n) = 2. Now assume the theorem true for
all i, 2 ≤ i ≤ t−1. As σ(π) ≥ σ(Kt−2, n) by induction (note that 31

2 t2 + 13
2 t+3 is a
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nondecreasing function) there exists a realization G of π, that contains a subgraph
H isomorphic to Kt−2. If G contains a copy of Kt we are done, so we henceforth
assume otherwise and let V (G) = {v1, . . . , vn} such that each vi has degree di.

We will assume, in light of Lemma 2.1, that V (H) = {v1, . . . , vt−2} and also note
that Lemma 2.2 assures that dt ≥ t− 1. Additionally, amongst all realizations of π
that contain a clique H on the vertices of degree d1, . . . , dt−2 let G maximize the
number of edges between H and the vertices of degree dt−1 and dt. For convenience,
we will let Z denote the set {vt−1, vt}. We now demonstrate that our assumption
of maximality implies that all of the possible edges between H and Z are present
in G.

Suppose, to the contrary, that there exists v ∈ H, z ∈ Z such that vz 6∈ E(G).
Let A = NG−H(v)−NG−H(z) and let B = NG−H(v) ∩NG−H(z).

Claim 2.3. If x ∈ NG−H(z) and y ∈ NG−H(v), then xy ∈ E(G). Consequently
each vertex in A is adjacent to every vertex in B and furthermore |B| ≤ t− 2.

Suppose, to the contrary, that x ∈ NG−H(z) and y ∈ NG−H(v), and xy 6∈ E(G).
If we exchange the edges xz and yv with the nonedges xy and zv, the result will
be a realization of π with more edges between H and Z than are present in G,
contradicting the maximality of G.

The other assertions follow from the definitions of A and B and from the fact
that the first statement implies that B must be complete. This establishes the
claim.

Claim 2.4. dt−2 ≤ 3t− 8 < 3t.

We will, in fact, show that d(v) ≤ 3t− 8. As dt−2 ≤ d(v), the result will follow.

If A is empty, then v is adjacent to t−3 vertices in H and at most |B|+(|Z|−1)
vertices outside of H. Thus d(v) ≤ t− 3 + t− 2 + 1 = 2t− 4.

Otherwise, there exists an a ∈ A. Suppose that x and y are nonadjacent ver-
tices in NG−H(z). Then we could exchange the edges zx, zy and va in G and the
nonedges xy, zv and za (which together form an alternating circuit of length 6)
again contradicting the maximality of G. Thus we may assume that NG−H(z) is
complete and hence has cardinality at most t− 2. As z is adjacent to at most t− 3
vertices in H, this implies that z has degree at most t− 3 + t− 2 = 2t− 5.

As z has degree at least t− 1, there is some vertex u in NG−H(z) that does not
lie in Z. By Claim 2.3, u is adjacent to every vertex in both A and B in addition
to z. Hence, as d(u) ≤ d(z) ≤ 2t− 5, we know that |A|+ |B| ≤ 2t− 5. This implies
that d(v) = (t − 3) + |A| + |B| ≤ 3t − 8. The result follows. This establishes the
claim.

By assumption, v and z are nonadjacent and both have degree at least t − 1.
Thus there exist vertices x ∈ NG−H−Z(v) and y ∈ NG−H−Z(z) (note that x and
y may be the same). If there exists an edge x′y′ in G − H − Z such that xx′

and yy′ are both not in E(G), then exchanging the edges x′y′, xv and yz for the
nonedges vz, xx′ and yy′ would yield a contradiction to the maximality of G. We
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will guarantee the existence of such an edge x′y′ by bounding the number of edges
incident to vertices in N(x) ∪N(y).

Claim 2.4 implies that |N(x) ∪ N(y)| ≤ 6t. This, and Claim 2.4 again, implies
there are at most (t−3)(n−1)+3t(5t+3) edges incident to vertices in N(x)∪N(y).
However, E(G) = 1

2σ(π) > (t− 3)(n− 1) + 3t(5t + 3) provided n > 31
2 t2 + 13

2 t + 3.
For n in this range, this implies that it is possible to find an appropriate edge x′y′.
This establishes that for all v ∈ H and z ∈ Z the edge vz ∈ E(G).

As we assumed that G does not contain a Kt, the only pair of nonadjacent
vertices in {v1, . . . , vt} is vt−1, vt. We now show that an edge exchange is possible
in G to create a copy of Kt on {v1, . . . , vt}. Let NG−H(vt−1) = N1 and NG−H(vt) =
N2. Since both vt−1 and vt have degree at least t−1, neither of these sets is empty
so let x ∈ N1 and y ∈ N2. If xy 6∈ E(G \ H), then we may exchange the edges
vt−1x, vty for the non-edges vt−1vt, xy constructing the desired Kt. Otherwise,
xy ∈ E(G) and so N1 ∩ N2 is complete, and hence has cardinality at most t − 2.
Our next step is to again show that there exists some v ∈ H such that d(v) < 3t.

Case 1: Assume that N1 ⊆ N2. In this case, N1 induces a complete graph,
implying that |N1| ≤ t−2 and that d(vt−1) = |N1|+|NH(vt−1)| ≤ t−2+t−2 = 2t−4.
By assumption d(x) ≤ d(vt−1), which implies that there is a vertex v in H such
that xv is not in E(G). Let a be any neighbor of v that lies outside of H and
Z. If xa 6∈ E(G) then we could exchange the edges vt−1x, vtx and va for the
nonedges xv, xa and vt−1vt, constructing the desired Kt. Otherwise, xa ∈ E(G).
Thus, if dG−H−Z(v) ≥ 2t − 5, it must be the case that d(x) ≥ 2t − 3 > d(vt−1), a
contradiction. Hence, in this case, d(v) ≤ dH(v) + (2t− 6) + 2 = 3t− 7 < 3t. The
case in which N2 ⊆ N1 is identical.

Case 2: Assume then that N1 −N2 and N2 −N1 are both nonempty. We first
show that N1 ∪ N2 is complete. Let x1 and x2 be in N1. If x1x2 6∈ E(G) then we
may exchange the edges vt−1x1, vt−1x2 and vty for the nonedges x1x2, vt−1vt and
vt−1y, where y is any vertex in N2 − N1, constructing the desired Kt. Otherwise,
x1x2 ∈ E(G). A similar argument yields that any y1 and y2 in N2 must be adjacent,
and together with the previous observation that any vertex in N1 is adjacent to
each vertex in N2 yields that N1 ∪N2 is complete. In particular, both vt−1 and vt

have degree at most 2t − 4, as in the previous case. Let x and y be in N1 − N2

and N2 − N1, respectively. There is some v in H such that yv 6∈ E(G); otherwise
H ∪ {vt, y} is a t-clique. Let a be any neighbor of v that lies outside of H and Z.
If xa 6∈ E(G), then we could exchange the edges vt−1x, vty and va for the nonedges
yv, xa and vt−1vt, completing the desired Kt. Otherwise, xa ∈ E(G). Thus, if
dG−H−Z(v) ≥ 2t− 5 then d(y) ≥ dG−H−Z(v) + 1 ≥ 2t− 3 > d(vt), a contradiction.
Hence dG−H−Z(v) ≤ 2t− 6 and d(v) ≤ 3t− 7 < 3t.

Having bounded the degree of some vertex v in H, we now complete the proof
of Theorem 1.2. Let x and y be in N1 and N2, respectively. Suppose there exists an
edge x′y′ lying outside of H ∪Z such that x′x and y′y are not edges in G. We may
then exchange the edges vt−1x, vty and x′y′ for the nonedges x′x, y′y and vt−1vt,
completing the desired Kt. As we have bounded the degree of some vertex v in H
by 3t, we can assure the existence of such an edge by bounding the number of edges
incident to the vertices in N(x) ∪N(y). This completes the proof. �
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3. conclusion

The purpose of this paper is to demonstrate the utility of the technique of edge
exchanging by giving a new, short proof of the Erdős-Jacobson-Lehel conjecture. It
is our hope that this will serve to broaden the collection of available techniques that
can be used to approach problems pertaining to potentially H-graphic sequences,
with the additional hope that new and general progress may be made in the area.

We would like to note that the bound on n given in our proof of Theorem 1.2
could be improved with a more detailed analysis. This however would make the
proof considerably longer, and detract from our stated purpose of focusing on the
technique of edge exchanging.

Acknowledgment: The authors wish to thank the anonymous referee for help-
ful comments.
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[3] Erdős, P., Jacobson, M.S., Lehel, J., Graphs Realizing the Same Degree Sequence and their

Respective Clique Numbers, Graph Theory, Combinatorics and Applications, Vol. I, (1991),

ed. Alavi, Chartrand, Oellerman and Schwenk, 439-449.
[4] Ferrara, M. and Schmitt, J., A Lower Bound for Potentially H-graphic Sequences, submitted.

[5] Gould, R.J., Jacobson, M.S., Lehel, J., Potentially G-graphic degree sequences, Combina-

torics, Graph Theory, and Algorithms (eds. Alavi, Lick and Schwenk), Vol. I, New York:
Wiley & Sons, Inc., (1999), 387-400.

[6] Hakimi, S.L., On realizability of a set of integers as degrees of the vertices of a linear graph,

II. Uniqueness, J. Soc. Indust. Appl. Math 11 (1963), 135-147.
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