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Abstract

We consider a variation of the classical Turán-type extremal problem as introduced
by Erdős, Jacobson and Lehel in [4]. Let π be an n-element graphic sequence and
let H be a graph. We wish to determine the smallest even integer m such that
any n-term graphic sequence π having degree sum at least m has some realization
containing H as a subgraph. Denote this value m by σ(H,n). For an arbitrarily
chosen H, we construct a graphic sequence π(H,n) whose degree sum plus two is
at least σ(H,n). Furthermore, we conjecture that equality holds in general, as this
is the case for all choices of H where σ(H,n) is currently known.
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1 Introduction

We consider only simple undirected graphs. We will denote the complete
graph on t vertices by Kt, and the join of two graphs, G and H, by G + H.
Further, we will write H ⊂ G if H is a subgraph of G and H < G if H is an
induced subgraph of G.

A sequence of nonnegative non-increasing integers π = (d1, d2, . . . , dn) is
said to be graphic if there exists a graph G of order n having degree sequence
π. The graph G is said to be a realization of π. Writing π = (dµ1

1 , . . . , dµt
t ) will

indicate that di repeats µi times.

For a given graph H, a sequence π is said to be forcibly H-graphic if every
realization of π contains H as a subgraph. Thus Turán’s classical question [22]
may be re-phrased as follows: determine the least even integer M so that every
n-term graphic sequence with the sum of the terms exceeding M is forcibly
Kt-graphic. The same question for an arbitrary graph H was considered and
solved by Erdős-Stone [6] (see also Erdős and Simonovits [5]). Sometimes
referred to as the fundamental theorem of extremal graph theory, their result
states that this value is determined by the chromatic number of H and n.

For a given graph H, a sequence π is said to be potentially H-graphic
if there exists some realization of π which contains H as a subgraph. In
the early 1990’s, Erdős, Jacobson and Lehel [4] posed the following problem:
determine the least even integer m so that every n-term graphic sequence with
the sum of the terms exceeding m is potentially Kt-graphic. They proposed
that this value, denoted σ(Kt, n), is (t− 2)(2n− t + 1) + 2 as they considered
the degree sequence ((n− 1)t−2, (t− 2)n−t+2) as the extremal sequence. (The
unique realization of this sequence is Kt−2 + Kn−t+2.) This value was shown
to be correct for the cases t = 3, 4 and 5 (see respectively [4], [11] and [16],
and [17]), and Li, Luo and Song [18] proved the conjecture true via linear
algebraic techniques for t ≥ 6 and n ≥

(
t
2

)
+3. A purely graph-theoretic proof

was given in [8] and also as a corollary to the main result in [3].

The aim of this note is, for an arbitrarily chosen graph H, to give a lower
bound for σ(H, n), that is to determine the least positive even integer so that
every n-term graphic sequence exceeding this σ(H, n) is potentially H-graphic.
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2 Main Result

We assume that H has no isolated vertices and that n is sufficiently large with
respect to the number of vertices of H, |V (H)|. Let α := α(H) denote the
independence number of H. We define the quantities

u := u(H) = |V (H)| − α(H)− 1,

and

d := d(H) = min{∆(F ) : F < H, |V (F )| = α(H) + 1}.

Let vi(H) denote the number of vertices of degree i in H. For all i, d ≤
i ≤ α − 1 we define the quantity mi to be the minimum number of vertices
of degree i over all induced subgraphs F of H with |V (F )| = α + 1. The
quantities ni, d ≤ i ≤ α− 1 are defined recursively such that nd = md− 1 and
ni = min{mi − 1, ni−1}. Finally, we define δα−1 = nα−1 and for d ≤ i ≤ α− 2
we define δi = ni − ni+1.

We now consider the following sequence:

π(H, n) = ((n− 1)u, (u + α− 1)δα−1 , (u + α− 2)δα−2 , . . .

. . . (u + d)δd , (u + d− 1)n−u−Σδi).

If this sequence is not graphic, then we will reduce the smallest term which
is strictly greater than u(H) in the sequence by one and redefine π(H, n) to
be this graphic sequence instead. Let σ(π(H, n)) denote the sum of the terms
of π(H, n).

Theorem 2.1 ([10]) Given a graph H and n sufficiently large then,

σ(H, n) ≥ max{σ(π(H∗, n)) + 2 | H∗ ⊆ H}.(1)

It has been shown that equality holds in Theorem 2.1 for the following
graphs: complete graphs [4], [11], [16], [17], [18], complete bipartite graphs
[2],[11], [19], complete balanced multipartite graphs [8], [1], matchings [11],
cycles [13], the friendship graph (K1 +kK2) [9],[12], split graphs [3], a disjoint
union of cliques [7] and a complete graph with an edge deleted [14], [15].
At this time we know of no subgraph for which equality does not hold and
thus conjecture that the inequality sign in Equation 1 may be replaced by an
equality sign.
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[4] Erdős, P., M. Jacobson, and J. Lehel, Graphs realizing the same degree
sequence and their respective clique numbers, Graph Theory, Combinatorics and
Applications, 1, 1991, ed. Alavi, Chartrand, Oellerman and Schwenk, 439-449.
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