Linear Algebra - MATH 221 TEST Section 1.1 - 2.5

Name: SOLUTION KEY

Instructions: The Emory Honor Code will be observed. No calculators are allowed. Show all work to receive full credit. Be as specific and detailed as possible.

PLEASE EXPECT A MORE CHALLENGING AND LONGER EXAM THAN THIS ONE!!

1. Define a **one-to-one** mapping.

A mapping $T : \mathbb{R}^n \to \mathbb{R}^m$ is said to be **one-to-one** if each $\mathbf{b} \in \mathbb{R}^m$ is the image of at most one \mathbf{x} in \mathbb{R}^n .

- 2. True or False: Justify each answer.
 - (a) If a system of linear equations has two different solutions, it must have infinitely many solutions.TRUE: If it has two different solutions then there must exist a free variable. We

are thus guaranteed an infinite number of solutions.

(b) The equation $A\mathbf{x} = \mathbf{0}$ has only the trivial solution if and only if there are no free variables.

TRUE: see the discussion in section 1.5

- (c) Let A, B, C be matrices then (AB)C = (AC)B. FALSE: Matrix multiplication is not commutative in general. Provide an example to illustrate.
- (d) If AC = 0, then either A = 0 or C = 0. FALSE: Provide a counter-example.
- (e) If $AB = I_n$, then A is invertible. TRUE: Follows from the Invertible Matrix Theorem.

3. An indexed set of vectors $\{\mathbf{v_1}, \mathbf{v_2}, \dots \mathbf{v_p}\}$ in \mathbb{R}^n is said to be **linearly independent** if ...

the vector equation

$$x_1\mathbf{v_1} + x_2\mathbf{v_2} \dots + x_p\mathbf{v_p} = \mathbf{0}$$

has only the trivial solution.

4. Let $T : \mathbf{R}^2 \to \mathbf{R}^2$ be the linear transformation that rotates points through an angle of $\pi/2$ radians about the origin. Find the standard matrix of T.

To determine the standard matrix it is sufficient to know what the transformation does to the unit vectors, $\mathbf{e_1}$, $\mathbf{e_2}$.

$$A = \begin{bmatrix} T(\mathbf{e_1}) & T(\mathbf{e_2}) \end{bmatrix}$$

Thus,

$$A = \left[\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array} \right]$$

- 5. Determine which of the following sets is linearly independent. Give reasons for your answers, use as few computations as possible.
 - (a) The second vector is a scalar multiple of the first, thus this set is linearly dependent.

$$v_{1} = \begin{bmatrix} 2\\4\\6 \end{bmatrix}$$
$$v_{2} = \begin{bmatrix} -40\\-80\\-120 \end{bmatrix}$$
$$v_{3} = \begin{bmatrix} 6\\3\\0 \end{bmatrix}$$

(b) This set contains the zero vector, so by Theorem 9 of chapter 1 we have that the set is linearly dependent.

$$v_1 = \begin{bmatrix} 1\\1\\1\\\end{bmatrix}$$
$$v_2 = \begin{bmatrix} 0\\0\\0\\\end{bmatrix}$$
$$v_3 = \begin{bmatrix} 5\\3\\1\\\end{bmatrix}$$

(c) This set contains more vectors then there are entries in each vector, so by Theorem 8 of Chapter 1 we have that the set is linearly dependent.

$$v_{1} = \begin{bmatrix} 2\\4\\6 \end{bmatrix}$$
$$v_{2} = \begin{bmatrix} -4\\-5\\-6 \end{bmatrix}$$
$$v_{3} = \begin{bmatrix} 6\\3\\0 \end{bmatrix}$$
$$v_{4} = \begin{bmatrix} 1\\3\\11 \end{bmatrix}$$

6. Given the LU factorization of the matrix A, solve the equation $A\mathbf{x} = \mathbf{b}$.

Solution to be provided prior to next exam. LU factorization not covered on first exam.

$$L = \begin{bmatrix} 1 & 0 \\ -3/2 & 1 \end{bmatrix}$$
$$U = \begin{bmatrix} 2 & 5 \\ 0 & 7/2 \end{bmatrix}$$
and
$$\mathbf{b} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

7. Explain the advantage, being as specific as possible, of a square matrix, A, having block upper triangular form. That is the matrix has the form

Solution to be provided prior to next exam. Matrix partitions not covered on first exam.

$$A = \left[\begin{array}{cc} A_{11} & A_{12} \\ 0 & A_{22} \end{array} \right]$$

8. If an $n \times n$ matrix K cannot be row reduced to I_n , what can you say about the columns of K? Why?

As K is not row equivalent to the identity matrix, the matrix K, by the Invertible Matrix Theorem, is not invertible, that is K is singular. Furthermore, the IMT implies that the columns of K do not form a linearly independent set and that the columns of K do not span \mathbb{R}^n .

9. Let

$$A = \begin{bmatrix} 1 & 2\\ 5 & 12 \end{bmatrix}$$

and $\mathbf{b} = \begin{bmatrix} 1\\ -5 \end{bmatrix}$.

Find A^{-1} and use it to solve the equation $A\mathbf{x} = \mathbf{b}$.

According to Theorem 4 of Chapter 2, we find that

$$A^{-1} = \frac{1}{2} \begin{bmatrix} 12 & -2 \\ -5 & 1 \end{bmatrix}.$$

That is,
$$A^{-1} = \frac{1}{2} \begin{bmatrix} 12 & -2 \\ -5 & 1 \end{bmatrix}.$$

Thus, $\mathbf{x} = A^{-1}\mathbf{b}$ and

$$\mathbf{x} = \left[\begin{array}{c} 11\\ -5 \end{array} \right]$$

10. Do the columns of the following matrix span \mathbb{R}^3 ?

$$M = \begin{bmatrix} 4 & 0 & 7 \\ 0 & 1 & 8 \\ 0 & 0 & -5 \end{bmatrix}$$

Yes. The matrix contains three pivots, so by the Invertible Matrix Theorem the columns of the matrix do span \mathbb{R}^3 .

11. Describe your favorite linear system. Answers will vary.