LINEAR ALGEBRA

EXAM 3
FALL 2021

Name:

Honor Code Statement:

Signature:

Directions: Complete all problems. Justify all answers/solutions; answers without justifying calculations will not receive credit. Calculators, cell-phones, texts, and notes are not permitted - the only permitted items to use are pens, pencils, rulers and erasers. Good luck!
(1) [8 points] The following question is based upon the reading of The 25 billion dollar eigenvector. Consider the following link matrix, which is a columnstochastic matrix. Draw the corresponding web. Without doing any calculations, is there a page that will be ranked highest?

$$
A=\left[\begin{array}{cccccc}
0 & 1 / 2 & 0 & 1 / 3 & 0 & 0 \\
1 / 2 & 0 & 0 & 1 / 3 & 0 & 0 \\
0 & 1 / 2 & 0 & 0 & 0 & 0 \\
1 / 2 & 0 & 1 & 1 / 3 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

[^0](2) Let
\[

A=\left[$$
\begin{array}{ccc}
-2 & -4 & 2 \\
-2 & 1 & 2 \\
4 & 2 & 5
\end{array}
$$\right]
\]

(a) [5 points] Show that 3 is an eigenvalue of A by finding the characteristic equation of A and evaluating at 3 .
(b) [5 points] Show that 3 is an eigenvalue of A by performing Gaussian elimination on the correct augmented matrix.
(c) $[3$ points $]$ Give a basis for the eigenspace associated with $\lambda=3$.
(d) [2 points] State the dimension of the eigenspace associated with $\lambda=3$.
(e) [3 points] State how A acts on this eigenspace.
(f) [4 points] The matrix A has two additional eigenvalues. These are -5 and 6 . Is the matrix A diagonalizable? Why or why not?
(g) [7 points] As -5 is an eigenvalue, there is an eigenvector associated to $\lambda=-5$. Call such a vector $\mathbf{v}_{\mathbf{1}}$. Prove that $\mathbf{v}_{\mathbf{1}}$ is NOT a scalar multiple of any vector found in the eigenspace associated with $\lambda=3$.
(3) [4 points] Is there a vector in \mathbb{R}^{3} with first two coordinates 3 and 4 with length less than 5 ? If yes, give such an example. If no, explain why not.
(4) [6 points] Let \mathbf{u} and \mathbf{v} be two vectors in \mathbb{R}^{2}, each with positive coordinates. Draw a picture that illustrates vectors involved in the following identity. Then use this figure to explain what the identity is saying.

$$
\|\mathbf{u}+\mathbf{v}\|^{2}+\|\mathbf{u}-\mathbf{v}\|^{2}=2\|\mathbf{u}\|^{2}+2\|\mathbf{v}\|^{2}
$$

(5) [5 points] Let $\mathbf{y}=\left[\begin{array}{l}3 \\ 3\end{array}\right]$ and $\mathbf{u}=\left[\begin{array}{c}-1 \\ 3\end{array}\right]$. Compute the distance from \mathbf{y} to the line through \mathbf{u} and the origin.
(6) (a) [10 points] Apply the Gram-Schmidt Process to the following set of vectors in $\mathbb{R}^{4}, \mathbf{u}_{\mathbf{1}}=(1,1,1,1), \mathbf{u}_{\mathbf{2}}=(-1,4,4,-1), \mathbf{u}_{\mathbf{3}}=(4,-2,2,0)$ which are a basis of some 3 -dimensional subspace W. Call these new vectors $\mathbf{a}_{\mathbf{1}}, \mathbf{a}_{\mathbf{2}}, \mathbf{a}_{\mathbf{3}}$.
(b) [8 points] Let $A=\left[\begin{array}{lll}\mathbf{a}_{\mathbf{1}} & \mathbf{a}_{2} & \mathbf{a}_{\mathbf{3}}\end{array}\right]$ and $\mathbf{b}=(0,0,0,1)$. Find the least-squares solution of the equation $A \mathbf{x}=\mathbf{b}$.

[^0]: Date: December 18, 2021, 2-5pm.

