Linear Algebra
 Exam 2 - Fall 2021

November 11, 2021

Name:
 Honor Code Statement:

Directions: Complete all problems. Justify all answers/solutions. Calculators, cellphones, texts, and notes are not permitted - the only permitted items to use are pens, pencils, rulers and erasers. Please turn off all electronic devices - in fact, you shouldn't have any with you. Additional blank white paper is available at the front of the room you are not permitted to use any other paper. Good luck!

1. [5 points] An isomorphism between two vector spaces V and W is a mapping that has three properties. List the three properties of this mapping.
2. [8 points] Use the fact that $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$ to compute $\operatorname{det}\left(C^{5}\right)$ where

$$
C=\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 2 \\
1 & 2 & 1
\end{array}\right]
$$

3. [9 points] Suppose we are given the following equation involving block-partitioned matrices

$$
\left[\begin{array}{ll}
X & 0 \\
Y & Z
\end{array}\right]\left[\begin{array}{cc}
A & 0 \\
B & C
\end{array}\right]=\left[\begin{array}{ll}
I & 0 \\
0 & I
\end{array}\right] .
$$

Suppose that the partition of the matrices is conformable for block multiplication, that all sub-matrices are square and where I stands for the identity matrix.
Find formulas for the following matrices (in the suggested order) in terms of A, B and C :
(a) Find a formula for X.
(b) Find a formula for Z.
(c) FInd a formula for Y.
4. [5 points] Show that the following set is not a subspace of \mathbb{R}^{2}.

$$
W=\left\{\left[\begin{array}{l}
x \\
y
\end{array}\right]: x y=0\right\}
$$

5. [5 points] Is the following vector \mathbf{b} in the null space of C ? Let

$$
\begin{gathered}
C=\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 2 \\
1 & 2 & 1
\end{array}\right] \\
\text { and } \\
\mathbf{b}=\left[\begin{array}{c}
-1 \\
2 \\
0
\end{array}\right] .
\end{gathered}
$$

6. [2 points each] Fill-in-the-blank

(a) For an $m \times n$ matrix $A, C o l A=\mathbb{R}^{m}$ if an only if the equation $A \mathbf{x}=\mathbf{b}$ has a solution
(b) The dimension of $N u l A$ is the
\qquad in the equation $A \mathbf{x}=\mathbf{0}$.
(c) In a p-dimensional vector space V, any linearly independent set of p vectors is automatically
\qquad -
(d) For bases \mathcal{B} and \mathcal{C}, the change-of-coordinates matrix from \mathcal{B} to \mathcal{C} can be found by performing Gaussian elimination on the following augmented matrix
7. [5 points] Suppose that H is a 1-dimensional subspace of the vector space \mathbb{R}^{3}. Consider a set of 3 vectors $\left\{\mathbf{b}_{\mathbf{1}}, \mathbf{b}_{\mathbf{2}}, \mathbf{b}_{\mathbf{3}}\right\}$ that spans H. The Spanning Set Theorem states that if one of the vectors in S is a linear combination of the remaining vectors in S, then the set formed from S by removing it still spans H. Suppose that $\mathbf{b}_{\mathbf{2}}=2 \mathbf{b}_{\mathbf{1}}$ and that
$\mathbf{b}_{\mathbf{1}}=\left[\begin{array}{c}-1 \\ 2 \\ 0\end{array}\right]$.
If $\operatorname{Span}\left\{\mathbf{b}_{\mathbf{3}}\right\}$ is not H, what can you say about $\mathbf{b}_{\mathbf{3}}$? Why does this not contradict the Spanning Set Theorem?
8. [8 points] Let $\mathbf{p}_{\mathbf{1}}=1+t, \mathbf{p}_{\mathbf{2}}=t+t^{2}$, and $\mathbf{p}_{\mathbf{3}}=1+t+t^{2}$. Use coordinate vectors to show that these polynomials form a basis \mathcal{B} for \mathbb{P}_{2}.

Find \mathbf{q} in \mathbb{P}_{2}, given that $[\mathbf{q}]_{\mathcal{B}}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$.
9. [7 points] Suppose that a 6×8 matrix has four pivot columns. It is technically wrong to say that ColA is equal to \mathbf{R}^{4}. What can you say? And, what vector space contains ColA?

How many vectors are in a basis for NulA? Why?

