Linear Algebra Exam 2 - Fall 2011

November 10, 2011

Name: Honor Code Statement:

Directions: Complete all problems. Justify all answers/solutions. Calculators/texts/notes are not permitted.

1. [6 points] We saw that an invertible square block partitioned matrix of the following form

$$\left[\begin{array}{cc}A_{11} & A_{12}\\0 & A_{22}\end{array}\right]$$

has an inverse of the form

$$\begin{bmatrix} A_{11}^{-1} & -A_{11}^{-1}A_{12}A_{22}^{-1} \\ 0 & A_{22}^{-1} \end{bmatrix}.$$

What is the advantage of knowing this? (Be as specific as possible.)

2. [8 points] Find an LU factorization of the following matrix.

$$A = \begin{bmatrix} -5 & 0 & 4\\ 10 & 2 & -5\\ 10 & 10 & 16 \end{bmatrix}$$

3. [8 points] Compute the determinant of the following matrix. Justify your steps.

	4	8	8	8	5]
	6	8	8	8	7
G =	0	8	8	3	0
	0	4	1	0	0
	0	1	0	0	0

[2points] Is G invertible? Why?

4. [6 points] The set of vectors $\{\mathbf{b_1}, \mathbf{b_2}, \mathbf{b_3}, \mathbf{b_4}\}$ is not a basis for \mathbb{R}^3 . Find a basis for \mathbb{R}^3 that is contained in this set. Justify your answer.

$$\mathbf{b_1} = \begin{bmatrix} 2\\2\\2 \end{bmatrix}$$
$$\mathbf{b_2} = \begin{bmatrix} 0\\1\\2 \end{bmatrix}$$
$$\mathbf{b_3} = \begin{bmatrix} 4\\5\\6 \end{bmatrix}$$
$$\mathbf{b_4} = \begin{bmatrix} 0\\0\\1 \end{bmatrix}$$

5. [5 points] Define **column space** of an $m \times n$ matrix A.

6. [5 points] Prove that the column space of an $m \times n$ matrix A is a subspace of \mathbb{R}^m .

7. [6 points] Given a basis $\mathcal{B} = \{\mathbf{b_1}, \mathbf{b_2}\}$ for \mathbb{R}^2 , where

$$\mathbf{b_1} = \begin{bmatrix} 0\\1 \end{bmatrix}$$
$$\mathbf{b_2} = \begin{bmatrix} 1\\1 \end{bmatrix},$$

and a different basis $\mathcal{C} = \{\mathbf{c_1}, \mathbf{c_2}\}$ for $\mathbb{R}^2,$ where

$$\mathbf{c_1} = \begin{bmatrix} 6\\0 \end{bmatrix}$$
$$\mathbf{c_2} = \begin{bmatrix} 0\\4 \end{bmatrix},$$

we may write the vector

$$\mathbf{x} = \left[\begin{array}{c} 6\\ 4 \end{array} \right]$$

in two different ways: $\mathbf{x} = -2\mathbf{b_1} + 6\mathbf{b_2}$ and $\mathbf{x} = 1\mathbf{c_1} + 1\mathbf{c_2}$. Why doesn't this violate the Unique Representation Theorem?

8. [5 points] With regard to the bases of the previous problem, find the change-of-coordinates matrix from \mathcal{B} to \mathcal{C} .

9. [5 points for each part] Find bases for the row space, the column space and the null space of the matrix A. Note that B is row equivalent to A.

$$A = \begin{bmatrix} 1 & 3 & 4 & -1 & 2 \\ 2 & 6 & 6 & 0 & -3 \\ 3 & 9 & 3 & 6 & -3 \\ 3 & 9 & 0 & 9 & 0 \end{bmatrix}$$
$$B = \begin{bmatrix} 1 & 3 & 4 & -1 & 2 \\ 0 & 0 & 1 & -1 & 1 \\ 0 & 0 & 0 & 0 & -5 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

10. [4 points] With regard to the previous problem: what is rank A? what is dim Nul A?