Linear Algebra
 Exam 1

Fall 2023

October 19, 2023

Name:
 Honor Code Statement:

Directions: Complete all problems. Justify all answers/solutions; notice that some problems have writing limits. Outside sources are not permitted. There is a 90 -minute time limit.

1. [5 points] Find the entry in row 2, column 1 of the product $A B$, where A and B are given below. Then find the entry in row 2 , column 1 of the product $B A$.

$$
\begin{aligned}
A & =\left[\begin{array}{ccc}
6 & 1 & 0 \\
-1 & 1 & 1 \\
0 & 0 & 5
\end{array}\right] \\
B & =\left[\begin{array}{ccc}
1 & 1 & 0 \\
1 & 1 & -10 \\
2 & 0 & 2
\end{array}\right]
\end{aligned}
$$

This calculation demonstrates that matrix multiplication is \qquad .
2. [10 points] Determine if the vector \mathbf{b} is a linear combination of the vectors $\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}$.

$$
\mathbf{b}=\left[\begin{array}{l}
-2 \\
-1 \\
-2
\end{array}\right], \mathbf{a}_{\mathbf{1}}=\left[\begin{array}{c}
0 \\
-2 \\
0
\end{array}\right], \mathbf{a}_{\mathbf{2}}=\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right], \mathbf{a}_{\mathbf{3}}=\left[\begin{array}{l}
1 \\
2 \\
2
\end{array}\right]
$$

Is the set $\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{\mathbf{3}}\right\}$ a spanning set for \mathbb{R}^{3} ? Why or why not?
3. [5 points] Using this same set of vectors $\left\{\mathbf{a}_{\mathbf{1}}, \mathbf{a}_{\mathbf{2}}, \mathbf{a}_{3}\right\}$ as in the previous problem, can you write $\mathbf{a}_{\mathbf{3}}$ as a linear combination of the others? If so, give one such linear dependence relation. (You may rely on previous calculations, if you wish.)
4. [5 points] Give a 3×3 matrix B such that the map $\mathbf{x} \mapsto B \mathbf{x}$ is not a one-to-one mapping. Demonstrate that the mapping is many-to-one by giving two distinct vectors \mathbf{u} and \mathbf{v} for which $B \mathbf{u}=B \mathbf{v}$.
5. [5 points] Set up but do not solve the linear system that arises from the following network under the assumption of preservation of flow (i.e. "flow in equals flow out").
6. [5 points] Consider the transformation T defined by $T\left(x_{1}, x_{2}\right)=\left(x_{1}^{2}, x_{2}\right)$. Show that the transformation fails to have either property of being a linear transformation.
7. [5 points] Let A be a 100×100 invertible matrix. Give the algorithm for finding its inverse. Approximately how many flops are required to find this inverse. (Three sentence writing limit.)
8. [5 points] Give the standard matrix of the transformation T that maps from \mathbb{R}^{2} to \mathbb{R}^{2} that rotates points around the origin by 180 -degrees clockwise. Is the matrix you found invertible?
9. [5 points] Remember that our goal is to solve $A \mathbf{x}=\mathbf{b}$. Suppose that A has an $L U$ factorization. Describe how we use this $L U$-factorization to solve $A \mathbf{x}=\mathbf{b}$. (Four sentence writing limit.)

