Invertible Matrix Theorem

Theorem 1 Let A be an $n \times n$ matrix. The following are equivalent:

- 1. A is an invertible (non-singular) matrix.
- 2. A is row equivalent to the $n \times n$ identity matrix.
- 3. A has n pivot positions.
- 4. The equation $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- 5. The columns of A form a linearly independent set.
- 6. The linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ is one-to-one.
- 7. The equation $A\mathbf{x} = \mathbf{b}$ has at least one (and in fact unique) solution for each \mathbf{b} in \mathbb{R}^n .
- 8. The columns of A span \mathbb{R}^n .
- 9. The linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ maps \mathbb{R}^n onto \mathbb{R}^n .
- 10. There is an $n \times n$ matrix C such that $CA = I_n$.
- 11. There is an $n \times n$ matrix D such that $AD = I_n$.
- 12. A^T is an invertible matrix.
- 13. The determinant of A is not zero.
- 14. The columns of A form a basis of \mathbb{R}^n .
- 15. Col $A = \mathbb{R}^n$.
- 16. dim Col A = n.
- 17. rank A = n.
- 18. Nul $A = \{ \mathbf{0} \}$.
- 19. $\dim Nul A = 0$.
- 20. The number 0 is not an eigenvalue of A.
- 21. $(ColA)^{\perp} = \{\mathbf{0}\}.$
- 22. $(NulA)^{\perp} = \mathbb{R}^n$.
- 23. Row $A = \mathbb{R}^n$.
- 24. A has n nonzero singular values.