Combinatorics Exam 2 Fall 2021

November 11, 2021

Name: Honor Code Pledge:

Signature:

Directions: Please complete **six of seven** of the problems.

- 1. When logging into a website for the first time, I frequently am faced with having to create a password meeting the specifications of the website. One such website asked for an 8-character password¹ that could use only the letters A, B, C, D, E and had to use each of these letters at least once. How many such passwords are there?
- 2. Below is a 5×5 chessboard upon which we'd like to place 5 non-attacking rooks. However, there are some forbidden positions (indicated in the color maroon) on the board where we cannot place rooks. How many such non-attacking rook placements are there?
- 3. Padovan sequence a_n begins as follows: $a_0 = 1, a_1 = 0, a_2 = 0$. The recurrence is given by $a_n = a_{n-2} + a_{n-3}$ for $n \ge 3$. For $n \ge 3$, we define a_n as the number of compositions of n into parts that are odd and each part is 3 or greater. Examples: $a_{10} = 3$ counts $3+7, 5+5, 7+3; a_6 = 1$ since $3+3=6; a_7 = 1$ since 7 = 7. See the table below for other values.

Find the generating function for this sequence. (I'm not asking you to find a formula for the n^{th} term, I'm just asking you to find g(x) as a rational function, i.e. a quotient of two polynomials.)

4. Solve the following recurrence relation by examining the first few values for a formula and then proving your conjectured formula by induction.

¹My favorite 8-character password is "Snow White and the Seven Dwarves". Ha! Ha! Hysterical.

$$h_n = -h_{n-1} + 1, (n \ge 1); h_0 = 0.$$

5. Let Q_n denote the number of permutations of $\{1, 2, ..., n\}$ in which none of the patterns 12, 23, ..., (n-1)n occurs. Show² that

$$Q_n = (n-1)! \left(n - \frac{n-1}{1!} + \frac{n-2}{2!} - \frac{n-3}{3!} + \dots + \frac{(-1)^{n-1}}{(n-1)!}\right).$$

- 6. Solve the non-homogeneous recurrence relation $h_n = 4h_{n-1} + 3 \times 2^n$, $(n \ge 1)$ and $h_0 = 1$.
- 7. Verify the recurrence relation given for the Padovan sequence for $n \ge 3$. That is, give a combinatorial argument as to why $a_n = a_{n-2} + a_{n-3}$ based upon the definition of a_n .

n	a_n		
0	1		
1	0		
2	0		
3	1		
4	0		
5	1		
6	1		
7	1		
8	2		
9	2		
10	3		
11	4		
12	5		
13	$\overline{7}$		
14	9		

Table 1: The first few terms of the Padovan sequence

²It has been previously shown that $Q_n = n! - \binom{n-1}{1}(n-1)! + \binom{n-1}{2}(n-2)! - \binom{n-1}{3}(n-3)! + \cdots + (-1)^{n-1}\binom{n-1}{n-1}1!$. I'm not saying this is necessary, but I told Abby that you didn't have to memorize formulas so I'm keeping good on my promise, I hope.