Combinatorics
 Exam 2

Fall 2021

November 11, 2021

Name:
 Honor Code Pledge:

Signature:

Directions: Please complete six of seven of the problems.

1. When logging into a website for the first time, I frequently am faced with having to create a password meeting the specifications of the website. One such website asked for an 8 -character password ${ }^{1}$ that could use only the letters A, B, C, D, E and had to use each of these letters at least once. How many such passwords are there?
2. Below is a 5×5 chessboard upon which we'd like to place 5 non-attacking rooks. However, there are some forbidden positions (indicated in the color maroon) on the board where we cannot place rooks. How many such non-attacking rook placements are there?
3. Padovan sequence a_{n} begins as follows: $a_{0}=1, a_{1}=0, a_{2}=0$. The recurrence is given by $a_{n}=a_{n-2}+a_{n-3}$ for $n \geq 3$. For $n \geq 3$, we define a_{n} as the number of compositions of n into parts that are odd and each part is 3 or greater. Examples: $a_{10}=3$ counts $3+7,5+5,7+3 ; a_{6}=1$ since $3+3=6 ; a_{7}=1$ since $7=7$. See the table below for other values.
Find the generating function for this sequence. (I'm not asking you to find a formula for the $n^{\text {th }}$ term, I'm just asking you to find $g(x)$ as a rational function, i.e. a quotient of two polynomials.)
4. Solve the following recurrence relation by examining the first few values for a formula and then proving your conjectured formula by induction.

[^0]$$
h_{n}=-h_{n-1}+1,(n \geq 1) ; h_{0}=0
$$
5. Let Q_{n} denote the number of permutations of $\{1,2, \ldots, n\}$ in which none of the patterns $12,23, \ldots,(n-1) n$ occurs. Show ${ }^{2}$ that
$$
Q_{n}=(n-1)!\left(n-\frac{n-1}{1!}+\frac{n-2}{2!}-\frac{n-3}{3!}+\cdots+\frac{(-1)^{n-1}}{(n-1)!}\right) .
$$
6. Solve the non-homogeneous recurrence relation $h_{n}=4 h_{n-1}+3 \times 2^{n},(n \geq 1)$ and $h_{0}=1$.
7. Verify the recurrence relation given for the Padovan sequence for $n \geq 3$. That is, give a combinatorial argument as to why $a_{n}=a_{n-2}+a_{n-3}$ based upon the definition of a_{n}.

n	a_{n}
0	1
1	0
2	0
3	1
4	0
5	1
6	1
7	1
8	2
9	2
10	3
11	4
12	5
13	7
14	9

Table 1: The first few terms of the Padovan sequence

[^1]

[^0]: ${ }^{1}$ My favorite 8-character password is "Snow White and the Seven Dwarves". Ha! Ha! Hysterical.

[^1]: ${ }^{2}$ It has been previously shown that $Q_{n}=n!-\binom{n-1}{1}(n-1)!+\binom{n-1}{2}(n-2)!-\binom{n-1}{3}(n-3)!+\cdots+$ $(-1)^{n-1}\binom{n-1}{n-1} 1$!. I'm not saying this is necessary, but I told Abby that you didn't have to memorize formulas so I'm keeping good on my promise, I hope.

