Exam 3 - Spring 2013

Review Sheet

November 12, 2013

- 1. **Definitions to know:** sequence, limit of a sequence, monotonic, bounded sequence, series, geometric series, harmonic series, absolutely convergent, conditionally convergent, power series, radius (and interval) of convergence
- 2. Theorems to know: monotonic sequence theorem, alternating series estimation theorem, and that the sum of a geometric series of $\sum_{n=0}^{\infty} ar^n$ is $\frac{a}{1-r}$ when |r| < 1
- 3. Be able to apply each of the following tests to determine if a series converges:
 - n^{th} term test for divergence
 - Integral test
 - Comparison test
 - Limit Comparison test
 - Alternating Series test
 - Ratio test
 - Root test
 - Absolute convergence test
- 4. Be able to apply the alternating series estimation theorem.
- 5. Be able to find the radius of convergence and the interval of convergence of a power series.
- 6. Find a power series representation for a function, as done in Section 11.9
- 7. Find a Taylor series of a function at a (including any of those on page 779)
- 8. Use a power series representation (or an n^{th} order Taylor polynomial) to approximate a definite integral or estimate the value of the the function which it represents.
- 9. Be able to apply Taylor's Inequality