Calculus I - Exam 3

Fall 2008

November 18, 2008

Name:
 Honor Code Statement:

Directions: Complete all problems. Justify all answers/solutions. Calculators are not permitted. The point value of each problem is indicated in brackets.

1. [5 points] Find the derivative of the following function.

$$
F(x)=\int_{3}^{x} \sin (t) \cos (t) d t
$$

2. [5 points] Water flows from a tank at a rate of $r(t)=200-4 t$ liters per minute, where $0 \leq t \leq 50$. Find the amount of water that flows from the tank during the first 10 minutes.
3. [5 points each] Evaluate the indefinite integral.
(a) $\int\left(5 \cos x+\sec x \tan x+x^{4}\right) d x$
(b) $\int(1+\tan (\theta))^{5} \sec ^{2}(\theta) d \theta$
(c) $\int x^{2} \sin \left(x^{3}\right) d x$
4. [5 points] Why is the following statement false?

$$
\int_{-2}^{1} \frac{1}{x^{4}} d x=\frac{-3}{8}
$$

5. [5 points] Suppose a particle moves back and forth along a straight line with velocity $v(t)$, measured in feet per second.
(a) What is the meaning of $\int_{60}^{120} v(t) d t$?
(b) What is the meaning of $\int_{60}^{120}|v(t)| d t$?
6. [10 points] Sketch the region enclosed by $y=\sqrt{x}, y=\frac{1}{2} x$ and $x=9$. Then find the area of the region.
7. [10 points] Use the Principle of Mathematical Induction to prove that for each natural number n the following holds:

$$
5+7+9+\cdots+(2 n+3)=n(n+4)
$$

8. [10 points] Find the numbers b such that the average value of $f(x)=2+6 x-3 x^{2}$ on the interval $[0, b]$ is equal to 3 .
9. [10 points] Find (but do not evaluate) an expression for the volume of the solid obtained by rotating the region bounded by $y=\frac{1}{x}, y=0, x=1$ and $x=3$ about $y=-1$. Sketch the region that is being rotated.
