Calculus I - Exam 2

Fall 2008

October 28, 2008

Name:
 Honor Code Statement:

Directions: Complete all problems. Justify all answers/solutions. Calculators are not permitted. The point value of each problem is indicated in brackets.

1. [6 points] Find the absolute maximum and absolute minimum values of $f(x)=$ $x^{3}-3 x+1$ on $[0,3]$.
2. [6 points] What does it mean when we write $\lim _{x \rightarrow \infty} f(x)=L$?
3. Consider the following function and find each of the following listed items. Upon completing each of the steps [2 points each], sketch the curve [6 points] on the graph paper provided.

$$
f(x)=1-\frac{3}{x^{2}+3}
$$

(a) Determine the domain of $f(x)$.
(b) Determine the y-intercept of $f(x)$.
(c) Determine any x-intercepts of $f(x)$.
(d) Determine if the graph is symmetric about the y-axis.
(e) Determine if the graph is symmetric about the origin.
(f) Determine any horizontal asymptotes of $f(x)$.
(g) Determine any vertical asymptotes of $f(x)$.
(h) Determine intervals of increase and decrease.
(i) Determine any local extrema.
(j) Determine intervals of concavity.
(k) Determine any inflection points.
4. [12 points] Find the dimensions of a rectangle with area $1,000 \mathrm{~m}^{2}$ whose perimeter is as small as possible.
5. [6 points] Find all numbers c that satisfy the conclusion of the Mean Value Theorem when $f(x)=x^{3}+x-1$ and we consider the interval $[0,2]$.
6. Given below is an incomplete statement and sketch of a particular case in the proof of Rolle's theorem. Your task is to complete the sketch by filling in the blanks. There are 6 blanks to fill in [2 points each].

Theorem 1 [Rolle's Theorem] Let f be a function that satisfies the following three hypotheses:
(a) f is continuous on the closed interval $[a, b]$.
(b) f is $\ldots \ldots \ldots$ on the open interval (a, b).
(c) $f(a)=\ldots \ldots \ldots$.

Then there is a number c in (a, b) such that $\ldots \ldots . . .$.

Proof of the case $f(x)>f(a)$ for some $x \in(a, b)$:
By the $\ldots \ldots$... Theorem (which we can apply by the first hypothesis), f has a maximum value somewhere in $[a, b]$. By the third hypothesis, it must attain this maximum value at a number c in the open interval (a, b). Then f has a $\ldots \ldots$. at c and, by the second hypothesis, f is differentiable at c. Therefore, the conclusion holds by Theorem.

