MULTIVARIABLE CALCULUS
 EXAM 3
 SPRING 2021

Name:

Honor Code Statement:

Directions: Complete all problems. Justify all answers/solutions. Each problem is worth 10 points; partial credit is given for any progress made. Electronic devices, books, and notes are not permitted. Please turn off cell phones and other devices; these should not be used under any circumstances. The last two pages contains formulas. Best of luck.
(1) Calculate the given iterated integral and indicate of what region in \mathbb{R}^{3} that it may be considered to represent the volume.

$$
\int_{0}^{5} \int_{-2}^{2}\left(4-x^{2}\right) d x d y
$$

Date: May 28, 2021.
(2) The definition of the double integral can be use to justify that $\iint_{D} 1 d A$ gives the area of D. Use this fact to calculate the area of the region bounded by $y=2 x, x=0$, and $y=1-2 x-x^{2}$. Sketch the region.
(3) Rewrite the given sum of iterated integrals as a single iterated integral by reversing the order of integration and evaluate. Sketch the region.

$$
\int_{-2}^{-1} \int_{-\sqrt{y+2}}^{\sqrt{y+2}}(x-y) d x d y+\int_{-1}^{2} \int_{-\sqrt{y+2}}^{-y}(x-y) d x d y
$$

(4) One may use a triple integral to compute the volume of a ball of radius 1 to be $\frac{4 \pi}{3}$. That is, one may show that

$$
\iiint_{W} 1 d V=\frac{4 \pi}{3}
$$

where $W=\left\{(x, y, z):\left|x^{2}+y^{2}+z^{2}\right| \leq 1\right\}$. Write this triple integral as an iterated integral. Do NOT evaluate it.
(5) Use a change of variables to evaluate the following double integral

$$
\iint_{D} \sin \left(x^{2}+y^{2}\right) d A
$$

where D is the region in the first quadrant bounded by the coordinate axes and the circles $x^{2}+y^{2}=1$ and $x^{2}+y^{2}=9$. (Note the table of formulas provided at the end of the exam.)
(6) Let $\mathbf{F}=\left(x^{2}+y\right) \mathbf{i}+(y-x) \mathbf{j}$ and let $\mathbf{x}(t)=\left(t, t^{2}\right), 0 \leq t \leq 1$. Calculate

$$
\int_{\mathrm{x}} \mathbf{F} \cdot \mathrm{ds}
$$

(7) Use Green's Theorem to calculate the area under one arch of the cycloid

$$
x=(t-\sin (t), y=(1-\cos (t))
$$

Hint: One first needs to recall the formula that turns the double integral calculation that naturally is given into a line integral. Also, there are two boundary pieces to this region, one is given and the other is (perhaps obviously) the horizontal axis.

Change of coordinates

Cylindrical to Cartesian:

$$
x=r \cos \theta, y=r \sin \theta, z=z
$$

Cartesian to cylindrical:

$$
r^{2}=x^{2}+y^{2}, \tan (\theta)=\frac{y}{x}, z=z
$$

Spherical to Cartesian:

$$
x=\rho \sin \varphi \cos \theta, y=\rho \sin \varphi \sin \theta, z=\rho \cos \varphi
$$

Cartesian to spherical:

$$
\rho^{2}=x^{2}+y^{2}+z^{2}, \tan (\varphi)=\sqrt{x^{2}+y^{2}} / z, \tan (\theta)=\frac{y}{x}
$$

Spherical to cylindrical:

$$
r=\rho \sin (\varphi), \theta=\theta, z=\rho \cos (\varphi)
$$

Cylindrical to spherical:

$$
\rho^{2}=r^{2}+z^{2}, \tan (\varphi)=r / z, \theta=\theta
$$

Change of variables in triple integrals:

$$
\iiint_{W} f(x, y, z) d x d y d z=\iiint_{W^{*}} f(x(u, v, w), y(u, v, w), z(u, v, w))\left|\frac{\partial(x, y, z)}{\partial(u, v, w)}\right| d u d v d w
$$

Volume elements:

$$
\begin{gathered}
d V=d x d y d z \text { Cartesian } \\
d V=r d r d \theta d z \text { Cylindrical } \\
d V=\rho^{2} \sin \varphi d \rho d \varphi d \theta \text { spherical } \\
d V=\left|\frac{\partial(x, y, z)}{\partial(u, v, w)}\right| d u d v d w \text { general }
\end{gathered}
$$

Trigonometric Identities

Addition and subtraction formulas

- $\sin (x+y)=\sin x \cos y+\cos x \sin y$
- $\sin (x-y)=\sin x \cos y-\cos x \sin y$
- $\cos (x+y)=\cos x \cos y-\sin x \sin y$
- $\cos (x-y)=\cos x \cos y+\sin x \sin y$
- $\tan (x+y)=\frac{\tan x+\tan y}{1-\tan x \tan y}$
- $\tan (x-y)=\frac{\tan x-\tan y}{1+\tan x \tan y}$

Double-angle formulas

- $\sin (2 x)=2 \sin x \cos x$
- $\cos (2 x)=\cos ^{2} x-\sin ^{2} x=2 \cos ^{2} x-1=1-2 \sin ^{2} x$
- $\tan (2 x)=\frac{2 \tan x}{1-\tan ^{2} x}$

Half-angle formulas

- $\sin ^{2} x=\frac{1-\cos (2 x)}{2}$
- $\cos ^{2} x=\frac{1+\cos (2 x)}{2}$

Others

- $\sin A \cos B=\frac{1}{2}[\sin (A-B)+\sin (A+B)]$
- $\sin A \sin B=\frac{1}{2}[\cos (A-B)-\cos (A+B)]$
- $\cos A \cos B=\frac{1}{2}[\cos (A-B)+\cos (A+B)]$

Pythagorean and reciprocal identities

- If you don't know these, then get a tattoo.

