# MULTIVARIABLE CALCULUS <br> EXAM 3 

FALL 2019

## Name:

Honor Code Statement:

Directions: Complete all problems. Justify all answers/solutions. Electronic devices, books, and notes are not permitted. Please turn off cell phones and other devices; these should not be used under any circumstances. The last two pages contains formulas. Best of luck.
(1) [10 points] Let $D$ be the region in $\mathbb{R}^{2}$ bounded by $x y^{2}=1, y=x, x=0$, and $y=3$. Sketch the region. Evaluate the following double integral,

$$
\iint_{D} 3 y d A .
$$

The properties that the integrand has to allow a change from a double integral to an iterated integral are $\qquad$ (fill-in-the-blank).
(2) [10 points] Rewrite the given sum of iterated integrals as a single iterated integral by reversing the order of integration. Sketch the region of integration. Evaluate the new integral obtained.

$$
\int_{0}^{1} \int_{0}^{x} \sin x d y d x+\int_{1}^{2} \int_{0}^{2-x} \sin x d y d x
$$

(3) [5 points] If $W$ is an elementary region in $\mathbb{R}^{3}$ and we wished to compute the volume of $W$ using a triple integral $\iiint_{W} f d V$, what should the integrand $f$ be as a function to make this computation? Why?
(4) [10 points] Change the order of integration of

$$
\int_{0}^{1} \int_{0}^{1} \int_{0}^{x^{2}} f(x, y, z) d z d y d x
$$

to give five other equivalent iterated integrals.
(5) [10 points] We will find the volume of the solid bounded by the plane $z=0$ and the paraboloid $z=1-x^{2}-y^{2}$.

The plane intersects the paraboloid in the circle with equation $\qquad$ -
Thus the solid lies under the paraboloid and above a circular disk $D$. In polar coordinates, $D$ is given by $\qquad$

The volume is given by $V=\iint_{D}\left(1-x^{2}-y^{2}\right) d A$. This would not be easy to evaluate in cartesian coordinates since the limits of integration would involve $\qquad$ . So we will make a change of variables from cartesian to polar coordinates. Compute this volume by making this change.
(6) [10 points] Find the work done by the force field $\mathbf{F}=x^{2} y \mathbf{i}+z \mathbf{j}+(2 x-y) \mathbf{k}$ on a particle as the particle moves along a straight line from $(1,1,1)$ to $(2,-3,3)$.
(7) [5 points] State the hypothesis of Green's Theorem. I've stated the conclusion.

Then

$$
\oint_{C} M d x+N d y=\iint_{D}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d x d y
$$

(8) [10 points]. The area of a region in the plane can be computed as $\iint_{D} 1 d x d y$. Green's Theorem allows us to compute this double integral as the following vector line integral

$$
\oint_{C}-\frac{1}{2} y d x+\frac{1}{2} x d y
$$

by setting $M(x, y)=-\frac{1}{2} y$ and $N(x, y)=\frac{1}{2} x$.
Another possibility for computing this double integral as a vector line integral is

$$
\oint_{C} x d y
$$

by setting $M(x, y)=0$ and $N(x, y)$ equal to what?
What's a third possibility for the computing this double integral as a vector line integral and what are the choices for $M(x, y)$ and $N(x, y)$ that yield this?

## Change of coordinates

Cylindrical to Cartesian:

$$
x=r \cos \theta, y=r \sin \theta, z=z
$$

Cartesian to cylindrical:

$$
r^{2}=x^{2}+y^{2}, \tan (\theta)=\frac{y}{x}, z=z
$$

Spherical to Cartesian:

$$
x=\rho \sin \varphi \cos \theta, y=\rho \sin \varphi \sin \theta, z=\rho \cos \varphi
$$

Cartesian to spherical:

$$
\rho^{2}=x^{2}+y^{2}+z^{2}, \tan (\varphi)=\sqrt{x^{2}+y^{2}} / z, \tan (\theta)=\frac{y}{x}
$$

Spherical to cylindrical:

$$
r=\rho \sin (\varphi), \theta=\theta, z=\rho \cos (\varphi)
$$

Cylindrical to spherical:

$$
\rho^{2}=r^{2}+z^{2}, \tan (\varphi)=r / z, \theta=\theta
$$

## Change of variables in triple integrals:

$$
\iiint_{W} f(x, y, z) d x d y d z=\iiint_{W^{*}} f(x(u, v, w), y(u, v, w), z(u, v, w))\left|\frac{\partial(x, y, z)}{\partial(u, v, w)}\right| d u d v d w
$$

Volume elements:

$$
\begin{gathered}
d V=d x d y d z \text { Cartesian } \\
d V=r d r d \theta d z \text { Cylindrical } \\
d V=\rho^{2} \sin \varphi d \rho d \varphi d \theta \text { spherical } \\
d V=\left|\frac{\partial(x, y, z)}{\partial(u, v, w)}\right| d u d v d w \text { general }
\end{gathered}
$$

## Trigonometric Identities

## Addition and subtraction formulas

- $\sin (x+y)=\sin x \cos y+\cos x \sin y$
- $\sin (x-y)=\sin x \cos y-\cos x \sin y$
- $\cos (x+y)=\cos x \cos y-\sin x \sin y$
- $\cos (x-y)=\cos x \cos y+\sin x \sin y$
- $\tan (x+y)=\frac{\tan x+\tan y}{1-\tan x \tan y}$
- $\tan (x-y)=\frac{\tan x-\tan y}{1+\tan x \tan y}$

Double-angle formulas

- $\sin (2 x)=2 \sin x \cos x$
- $\cos (2 x)=\cos ^{2} x-\sin ^{2} x=2 \cos ^{2} x-1=1-2 \sin ^{2} x$
- $\tan (2 x)=\frac{2 \tan x}{1-\tan ^{2} x}$


## Half-angle formulas

- $\sin ^{2} x=\frac{1-\cos (2 x)}{2}$
- $\cos ^{2} x=\frac{1+\cos (2 x)}{2}$

Others

- $\sin A \cos B=\frac{1}{2}[\sin (A-B)+\sin (A+B)]$
- $\sin A \sin B=\frac{1}{2}[\cos (A-B)-\cos (A+B)]$
- $\cos A \cos B=\frac{1}{2}[\cos (A-B)+\cos (A+B)]$

Pythagorean and reciprocal identities

- If you don't know these, then get a tattoo.

