MULTIVARIABLE CALCULUS
 EXAM 3

FALL 2013

Name:

Honor Code Statement:

Directions: Complete all problems. Justify all answers/solutions. Electronic devices, books, and notes are not permitted. Please turn off cell phones and other devices. The last two pages contains formulas. Best of luck.
(1) [10 points] Calculate the given iterated integral and indicate of what region in \mathbb{R}^{3} it may be considered to represent the volume.

$$
\int_{-2}^{3} \int_{0}^{1}|x| \sin (\pi y) d y d x
$$

[^0](2) [10 points] Let D be the region bounded by $x=y^{3}$ and $y=x^{2}$. We are interested in computing $\iint_{D} x y d A$. Give an equivalent iterated integral where you treat D as a Type I elementary region. Then do the same when you treat D as a Type II elementary region. Finally, compute a numerical value for one of these iterated integrals.
(3) [10 points] Show how to set up the following triple integral as an iterated integral in one-half of the total number of ways possible, but do NOT evaluate the integral. Find $\iiint_{W} z d V$, where W is the region in the first octant bounded by the cylinder $y^{2}+z^{2}=9$ and the planes $y=x, x=0$, and $z=0$. (A Maple sketch of W is included with the exam packet.)
(4) [10 points] Transform the given integral in Cartesian coordinates to one in polar coordinates and evaluate the polar integral. Give a sketch of D and D^{*}. Also, find the area of D and the area of D^{*} and state the relation between these two areas.
$$
\int_{0}^{2} \int_{0}^{\sqrt{4-x^{2}}} d y d x
$$
(5) [10 points] Verify Green's theorem for the vector field $\mathbf{F}=2 y \mathbf{i}+x \mathbf{j}$, and D is the semicircular region $x^{2}+y^{2} \leq a^{2}$ and $y \geq 0$ by calculating both $\oint_{\delta D} M d x+N d y$ and $\iint_{D}\left(N_{x}-M_{y}\right) d A$.
(6) [5 points] Calculate the following difference of two scalar line integrals, $\int_{\mathbf{x}} f d s-\int_{\mathbf{y}} g d s$, where $f(x, y, z)=x+y+z$ and $g(x, y, z)=z+y+x$, and
\[

$$
\begin{gathered}
\mathbf{x}(t)= \begin{cases}(2 t, 0,0) & : \text { if } 0 \leq t \leq 1 \\
(2,3 t-3,0) & : \text { if } 1 \leq t \leq 2 \\
(2,3,2 t-4) & : \text { if } 2 \leq t \leq 3\end{cases} \\
\mathbf{y}(t)= \begin{cases}(4 t, 0,0) & : \text { if } 0 \leq t \leq 1 / 2 \\
(2,6 t-3,0) & : \text { if } 1 / 2 \leq t \leq 1 \\
\left(2,3, \frac{1}{50} t-\frac{1}{50}\right) & : \text { if } 1 \leq t \leq 101\end{cases}
\end{gathered}
$$
\]

Change of coordinates

Cylindrical to Cartesian:

$$
x=r \cos \theta, y=r \sin \theta, z=z
$$

Cartesian to cylindrical:

$$
r^{2}=x^{2}+y^{2}, \tan (\theta)=\frac{y}{x}, z=z
$$

Spherical to Cartesian:

$$
x=\rho \sin \varphi \cos \theta, y=\rho \sin \varphi \sin \theta, z=\rho \cos \varphi
$$

Cartesian to spherical:

$$
\rho^{2}=x^{2}+y^{2}+z^{2}, \tan (\varphi)=\sqrt{x^{2}+y^{2}} / z, \tan (\theta)=\frac{y}{x}
$$

Spherical to cylindrical:

$$
r=\rho \sin (\varphi), \theta=\theta, z=\rho \cos (\varphi)
$$

Cylindrical to spherical:

$$
\rho^{2}=r^{2}+z^{2}, \tan (\varphi)=r / z, \theta=\theta
$$

Change of variables in triple integrals:
$\iiint_{W} f(x, y, z) d x d y d z=\iiint_{W^{*}} f(x(u, v, w), y(u, v, w), z(u, v, w))\left|\frac{\partial(x, y, z)}{\partial(u, v, w)}\right| d u d v d w$
Volume elements:

$$
\begin{gathered}
d V=d x d y d z \text { Cartesian } \\
d V=r d r d \theta d z \text { Cylindrical } \\
d V=\rho^{2} \sin \varphi d \rho d \varphi d \theta \text { spherical } \\
d V=\left|\frac{\partial(x, y, z)}{\partial(u, v, w)}\right| d u d v d w \text { general }
\end{gathered}
$$

Trigonometric Identities

Addition and subtraction formulas

- $\sin (x+y)=\sin x \cos y+\cos x \sin y$
- $\sin (x-y)=\sin x \cos y-\cos x \sin y$
- $\cos (x+y)=\cos x \cos y-\sin x \sin y$
- $\cos (x-y)=\cos x \cos y+\sin x \sin y$
- $\tan (x+y)=\frac{\tan x+\tan y}{1-\tan x \tan y}$
- $\tan (x-y)=\frac{\tan x-\tan y}{1+\tan x \tan y}$

Double-angle formulas

- $\sin (2 x)=2 \sin x \cos x$
- $\cos (2 x)=\cos ^{2} x-\sin ^{2} x=2 \cos ^{2} x-1=1-2 \sin ^{2} x$
- $\tan (2 x)=\frac{2 \tan x}{1-\tan ^{2} x}$

Half-angle formulas

- $\sin ^{2} x=\frac{1-\cos (2 x)}{2}$
- $\cos ^{2} x=\frac{1+\cos (2 x)}{2}$

Others

- $\sin A \cos B=\frac{1}{2}[\sin (A-B)+\sin (A+B)]$
- $\sin A \sin B=\frac{1}{2}[\cos (A-B)-\cos (A+B)]$
- $\cos A \cos B=\frac{1}{2}[\cos (A-B)+\cos (A+B)]$

Pythagorean and reciprocal identities

- If you don't know these, then get a tattoo.

[^0]: Date: December 10, 2013.

