MULTIVARIABLE CALCULUS
 EXAM 2
 SPRING 2024

Name:

Honor Code Statement:

Directions: Complete all problems. Justify all answers/solutions. Each problem is worth 10 points. Calculators/notes/texts/cell-phones are not permitted - the only permitted item is a writing utensil. Best of luck.
(1) The position vector of an object moving in a plane is given by $\mathbf{x}(t)=$ $t^{3} \mathbf{i}+t^{2} \mathbf{j}$. Find its velocity, speed, and acceleration when $t=1$. Give an appropriate sketch of the path for $t \geq 0$. Then find an equation for the line tangent to \mathbf{x} at $\mathbf{x}(1)$.
(2) Set up the correct definite integral for computing the length of the given path. You do not need to solve it.

$$
\mathbf{x}(t)=(\ln (\cos (t)), \cos (t), \sin (t)), \frac{\pi}{6} \leq t \leq \frac{t}{3}
$$

(3) Calculate the flow line $\mathbf{x}(t)$ of the vector field $\mathbf{F}(x, y)=\left(x^{2}, y\right)$ at the point $\mathbf{x}(1)=(1, e)$. Sketch this flow line starting at $t=1$. Calculate the divergence of \mathbf{F} at this point.
(4) Find the first- and second-order Taylor polynomials for the function

$$
f(x, y)=e^{x} \sin (y)
$$

at the point $\mathbf{a}=\left(1, \frac{\pi}{2}\right)$.
(5) Use the second derivative test for functions of two variables to determine the nature of the critical points of the following function which I'm telling you are $(0,0)$ and $(2,0)$.

$$
f(x, y)=e^{-x}\left(x^{2}+3 y^{2}\right)
$$

(6) Use the method of Lagrange multipliers to find the extreme values of the function $f(x, y)=x^{2}+2 y^{2}$ subject to the condition $x^{2}+y^{2}=1$.

Write the system of equations here.

Note that the first equation gives $x=0$ or $\lambda=1$. Use this hint to find the critical points.

Evaluate these critical points on the function to determine which correspond to maximum and which to minimum.

