MULTIVARIABLE CALCULUS EXAM 2 SPRING 2021

Name: Honor Code Statement:

.

Directions: Complete all problems. Justify all answers/solutions. Each problem is worth 10 points. Calculators/notes/texts/cell-phones are not permitted – the only permitted item is a writing utensil. Best of luck.

(1) Sketch the image of the following path, using arrows to indicate the direction in which the parameter increases:

 $\mathbf{x}(t) = e^t \mathbf{i} + e^{-t} \mathbf{j}$

Now find an equation for the line tangent to this path at t = 1.

Date: April 22, 2021.

(2) Consider the curve $g(t) = (t, \frac{2}{3}t^{3/2})$. Give the arc length s(t) in terms of the parameter t measured from 0. Then solve for t in terms of s. Next give the function with uniform speed 1 which traces the same curve.

3

SPRING 2021

(3) Describe to me in words the gradient field of the following function,

$$g(x, y, z) = \frac{1}{4}(x^2 + y^2 + z^2)$$

Your response should include use of the words "direction" and "magnitude".

(4) If $\mathbf{F}(x, y, z) = (y, z^2, x^3)$, then describe the vectors of the vector field $curl\mathbf{F}$ that lie along the y-axis (i.e. where x = z = 0). Your response should include use of the words "direction" and "magnitude".

 $\mathbf{5}$

SPRING 2021

 $(5)\;$ Find the first- and second-order Taylor polynomials for the function

$$f(x,y) = ye^{3x} + e^{2y}$$

at the point $\mathbf{a} = (0, 2)$.

(6) Consider the function $f(x,y) = x^2 + y^2$ for points (x,y) in the square $U = \{(x,y)| -1 \le x \le 1, -1 \le y \le 1\}$. Find the critical points of f. Determine the nature of these critical points. Does f have a global maximum on U? If yes, suggest where it might be. If no, explain why not.

 $\overline{7}$

SPRING 2021

(7) Set up (but do not solve) the Lagrange equations that would allow one to determine the maximum value of f(x, y, z) = x - y + z, subject to the condition $x^2 + y^2 + z^2 = 1$.