MULTIVARIABLE CALCULUS
 EXAM 2
 SPRING 2018

Name:

Honor Code Statement:

Directions: Complete all problems. Justify all answers/solutions. Computational problems are worth 10 points each; others are worth 5 points each. Calculators/notes/texts/cellphones are not permitted - the only permitted item is a writing utensil. Best of luck.
(1) Find an equation for the line tangent to the path $\mathbf{x}(t)=\left(\cos \left(e^{t}\right), 3-t^{2}, t\right)$ at the value $t=1$.
(2) Find the length of the path $\mathbf{x}(t)=\left(t^{3}, 3 t^{2}, 6 t\right)$ for $-1 \leq t \leq 2$.
(3) Define vector field.
(4) Some of these are scalar fields and some are vector fields, say what each is.

- $\operatorname{grad} f$
- $\operatorname{div} \mathbf{F}$
- $\operatorname{curl} \mathbf{F}$
- $\operatorname{grad} f \times \operatorname{div} \mathbf{F}$
(5) Calculate the flow line $\mathbf{x}(t)$ of the vector field $\mathbf{F}(x, y)=x \mathbf{i}-y \mathbf{j}$ at the point $\mathbf{x}(0)=(1,2)$.
(6) Given $\mathbf{F}(x, y, z)=x y z \mathbf{i}-e^{z} \cos (x) \mathbf{j}+x y^{2} z^{3} \mathbf{k}$, determine $\nabla \cdot(\nabla \times \mathbf{F})$. Use words to say what it is that is being computed.
(7) Find the first- and second-order Taylor polynomials for $f(x, y, z)=y e^{3 x}+$ $z e^{2 y}$ at $\mathbf{a}=(0,0,2)$.
(8) Identify and determine the nature of the critical points of $f(x, y)=e^{-y}\left(x^{2}-\right.$ y^{2}).
(9) A cylindrical metal can is to be manufactured from a fixed amount of sheet metal. Use the method of Lagrange multipliers to determine the ratio between the dimensions of the can with the largest capacity. Please: Set up the system of equations to solve; you need not solve it.

