MULTIVARIABLE CALCULUS EXAM 2 - PART 1

FALL 2019

Name:

Honor Code Statement:

Directions: Complete all problems - each is worth 10 points. Justify all answers/solutions. Calculators are not permitted. Best of luck.
(1) A particle is travelling along the path $\mathbf{x}(t)=\left(\cos \left(e^{t}\right), 3-t^{2}, t\right)$ when suddenly at $t=1$ all forces acting upon it cease. What happens to the particle? That is, find the tangent line to the path at the time $t=1$.

[^0](2) Calculate the length of the path $\mathbf{x}(t)=\left(t^{2}, \frac{2}{3}(2 t+1)^{3 / 2}\right)$ for $0 \leq t \leq 4$.
(3) Calculate the flow line $\mathbf{x}(t)$ for the vector field $\mathbf{F}(x, y, z)=2 \mathbf{i}-3 y \mathbf{j}+z^{3} \mathbf{k}$ that passes through the point $\mathbf{x}(0)=(3,5,7)$.
(4) For the vector field $\mathbf{F}=(\cos (y z)-x) \mathbf{i}+(\cos (x z)-y) \mathbf{j}+(\cos (x y)-z) \mathbf{k}$, find:
(a) the divergence
(b) the curl.
(1) For $f(x, y, z)=e^{2 x-3 y} \sin (5 z)$ and the point $\mathbf{a}=(0,0,0)$, express the second order Taylor polynomial $p_{2}(x, y, z)$, using the derivative matrix and the Hessian matrix
(2) Identify and determine the nature of the critical point of the function $f(x, y, z)=x^{2}-x y+z^{2}-2 x z+6 z$.
(3) Use Lagrange multipliers to identify the critical points of $f(x, y, z)=x^{2}+$ $y^{2}+z^{2}$ subject to the following constraint $x+y-z=1$.

[^0]: Date: November 11, 2019.

