MULTIVARIABLE CALCULUS EXAM 2 FALL 2013

Name: Honor Code Statement:

Directions: Complete all problems. Justify all answers/solutions. Definitions are worth 4 points, true/false questions are worth 2 points each, and any other problem is worth 10 points. Calculators are not permitted. Best of luck.

(1) [5 points] Find the value of the directional derivative of $f(x, y, z) = 3x^2y^2z^2 + 2xyz + z$ at $\mathbf{a} = (4, 5, 6)$ in the direction of the vector (1, 1, 2).

(2) [5 points] Calculate the velocity, speed, and acceleration of the following path: $\mathbf{x}(t) = (5 \sin t, 3 \cos t)$.

Date: November 14, 2013.

(3) [5 points] Calculate the length of the path $\mathbf{x}(t) = (t^3, 3t^2, 6t)$ for $-1 \le t \le 2$.

(4) [5 points] The following figure is the vector field for the function $\mathbf{F}(x, y) = (y, -x)$. Use the figure to sketch the flow line that contains the point (2,0).

1	1	/	/	>	~	حر	حبر	<u>مـر</u>		-		~	~	1	1	1	1	1	1
													1						
1	1	1	,						4		-	-		~	~	1	1	1	1
1	1	1	1	1	1	1	~	-		~	-	-	111111111	1	1	1	1	1	1
1	1	1	1	1	1	>	1	مر	-	-	~	1	1	7	1	1	1	1	1
1	1	1	1	1	1	1	-	<i>y</i>	-	-	~	-	1	~	7	1	1	1	1
1	1	1	1	7	1	1	1	-	2-	~	\sim	~	1	1	V	١	N	1	1
1	1	1	1	1	1	,	1	-	8 <u>2</u>	22	-	•	1	1	١	1	٧	1	V
1	1	1	1	1	1	\mathcal{I}_{i}	Ż	1	2	2	\$	V.	\mathbf{x}	Ł	٢	1	I.	1	1
1	1	1	1	1	1	1	1	\$			2 4	I.	1	1	1	ł	1	1	l
1	1	-4	1	1	з.	-2	21	10	0	22	33	£:	'2	$t_{\rm c}$	Ľ	ł	4	ł	
1	1	1	1	٦	٦	۲	`	\$	12	22	1	1	1	1 x	1	1	1	l	l
1	1	1	1	۸.	1	N	3	5	37	-8	×	6	1	1	1	1	1	l	1
1	1	1	1	1	٦	1	5	~	-5-	-	-	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	~	~	0	-	-	1	-	1	1	1	1	1	1
1	1	1	1	1	~	1	1	-	-	-	***	1	~	1	1	1	1	1	1
1	1	1	1	1	~	~	-	-	57		-	~	-	1	1	1	1	1	1
1	1	1	1	1	1	1	~	~	- 4		-	-	1	-	1	1	1	1	1
													/						
1	1	1	~	1	1	1	5	<u></u>		-	-	~	0	<	<	1	1	1	1

3

(5) [5 points] Is it possible for the vector field of the previous problem to also be a gradient field? If yes, then find a scalar-valued function f that would produce this **F**. If no, explain why.

(6) [5 points] Why would asking you to find the curl of **F**, where **F** is as given in problem 4, be a trick question?

4

(7) [10 points] Find the first- and second-order Taylor polynomials for the function $f(x, y) = xy + \sin x \cos y$ at $\mathbf{a} = (\pi, \pi)$.

 $\mathbf{5}$

FALL 2013

(8) [10 points] Identify and determine the nature of the two critical points of the function $f(x, y, z) = x^3 + xz^2 - 3x^2 + y^2 + 2z^2$.

(9) [10 points] A farmer has determined that her cornfield will yield corn (in bushels) according to the formula

$$B(x,y) = 4x^2 + y^2 + 600,$$

where x denotes the amount of water (measured in hundreds of gallons) used to irrigate the field and y the number of pounds of fertilizer applied to the field. The fertilizer costs \$10 per pound and water costs \$15 per hundred gallons (wow, expensive water!). If she can allot \$500 to prepare her field through irrigation and fertilization, use a Lagrange multiplier to determine how much water and fertilizer she should purchase in order to maximize her yield.

6

(10) [5 points] Let $\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$. Verify that $\nabla ||\mathbf{r}||^n = n||\mathbf{r}||^{n-2}\mathbf{r}$.