MULTIVARIABLE CALCULUS
 EXAM 2

FALL 2013

Name:

Honor Code Statement:

Directions: Complete all problems. Justify all answers/solutions. Definitions are worth 4 points, true/false questions are worth 2 points each, and any other problem is worth 10 points. Calculators are not permitted. Best of luck.
(1) [5 points] Find the value of the directional derivative of $f(x, y, z)=3 x^{2} y^{2} z^{2}+$ $2 x y z+z$ at $\mathbf{a}=(4,5,6)$ in the direction of the vector $(1,1,2)$.
(2) [5 points] Calculate the velocity, speed, and acceleration of the following path: $\mathbf{x}(t)=(5 \sin t, 3 \cos t)$.

[^0]（3）［5 points］Calculate the length of the path $\mathbf{x}(t)=\left(t^{3}, 3 t^{2}, 6 t\right)$ for $-1 \leq t \leq 2$ ．
（4）［5 points］The following figure is the vector field for the function $\mathbf{F}(x, y)=$ $(y,-x)$ ．Use the figure to sketch the flow line that contains the point $(2,0)$ ．

	－－
	－－
1／ 7 ¢ \quad ，	ーい入へへ入
／$/ 1 / 7$,	
$11 / 1 / 1,2$	
171111	$\cdots \vee 1 \times 1$
111111	，1 1 1 1
111111	$1 \cdot 11111$
1－1－4 1－1 1－1－2	$1 i_{2}^{1} 1+11911$
$111111 \times$	－，，，$\langle x\| \leqslant 1!$
111111	－，1 1 1／l
1	
～－ 2	$\cdots 11111$
11111	$\cdots \cdots 1 / 1$
\人心－－	－－＜ 1111
	$\cdots \cdots \ll$
1	\cdots

(5) [5 points] Is it possible for the vector field of the previous problem to also be a gradient field? If yes, then find a scalar-valued function f that would produce this \mathbf{F}. If no, explain why.
(6) [5 points] Why would asking you to find the curl of \mathbf{F}, where \mathbf{F} is as given in problem 4 , be a trick question?
(7) [10 points] Find the first- and second-order Taylor polynomials for the function $f(x, y)=x y+\sin x \cos y$ at $\mathbf{a}=(\pi, \pi)$.
(8) [10 points] Identify and determine the nature of the two critical points of the function $f(x, y, z)=x^{3}+x z^{2}-3 x^{2}+y^{2}+2 z^{2}$.
(9) [10 points] A farmer has determined that her cornfield will yield corn (in bushels) according to the formula

$$
B(x, y)=4 x^{2}+y^{2}+600
$$

where x denotes the amount of water (measured in hundreds of gallons) used to irrigate the field and y the number of pounds of fertilizer applied to the field. The fertilizer costs $\$ 10$ per pound and water costs $\$ 15$ per hundred gallons (wow, expensive water!). If she can allot $\$ 500$ to prepare her field through irrigation and fertilization, use a Lagrange multiplier to determine how much water and fertilizer she should purchase in order to maximize her yield.
(10) [5 points] Let $\mathbf{r}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$. Verify that $\nabla\|\mathbf{r}\|^{n}=n\|\mathbf{r}\|^{n-2} \mathbf{r}$.

[^0]: Date: November 14, 2013.

