MULTIVARIABLE CALCULUS
 EXAM 1
 SPRING 2024

Name:

Honor Code Statement:

Directions: You may OMIT one 5-point question; indicate which you omit by putting a slash through it. Justify all answers/solutions. Calculators, notes, texts and collaboration are not permitted. A formula sheet is on the last page. Best of luck!
(1) [5 points] Where does the line $x=1-4 t, y=t-3 / 2, z=2 t+1$ intersect the plane $5 x-2 y+z=1$?
(2) [5 points] Show that the vectors $\|\mathbf{b}\| \mathbf{a}+\|\mathbf{a}\| \mathbf{b}$ and $\|\mathbf{b}\| \mathbf{a}-\|\mathbf{a}\| \mathbf{b}$ are orthogonal where $\mathbf{a}=(3,4,12)$ and $\mathbf{b}=(1,0,1)$.
(3) [10 points] The volume of a parallelepiped is given by two formulas:

$$
\|\mathbf{a} \times \mathbf{b}|\||\mathbf{c}|\| \cos (\theta)|
$$

and

$$
|(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}| .
$$

(a) Compute the volume of the parallelepiped when $\mathbf{a}=(1,0,1), \mathbf{b}=$ $(1,1,1)$ and $\mathbf{c}=(0,0,1)$.
(b) What is θ referring to in the formula?
(c) What are the set of possible values of θ ?
(d) For which values of θ can the absolute value sign be "dropped"?
(e) If the absolute valued sign was "dropped" for a value of θ for which it shouldn't, what non-sensical result would be obtained?
(4) [5 points] Find the values for A so that the planes

$$
A x-y+z=1
$$

and

$$
3 A x+A y-2 z=5
$$

are perpendicular.
(5) [5 points] It is true that for all vectors $\mathbf{a}, \mathbf{b}, \mathbf{c} \in \mathbb{R}^{3}$, we have

$$
\|\mathbf{a}-\mathbf{b}\| \leq\|\mathbf{a}-\mathbf{c}\|+\|\mathbf{c}-\mathbf{b}\|
$$

Illustrate this inequality. That is, draw a picture that highlights the important aspects of the inequality. If you were to name this inequality, what name would you give it?
(6) [10 points] Consider the following equation:

$$
x^{2}+y^{2}+\frac{z^{2}}{4}=1
$$

(a) Sketch several level curves of this surface.
(b) Sketch sections of the surface by planes of the form $x=c$.
(c) Sketch sections of the surface by planes of the form $y=c$.
(d) Describe the surface or make a sketch of it.
(7) [5 points] Show that the following limit does not exist by computing the limits along the lines $y=x$ and another line of your choosing.

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}}{x^{2}+y^{2}}
$$

(8) [10 points]. Given $f(x, y, z)=\sin (x y z)$ and the point $\mathbf{a}=(\pi, 0, \pi / 2)$. Find the gradient of f at \mathbf{a}. Then find the tangent hyperplane to f at this point.
(9) Earlier in the exam, we considered the following equation:

$$
x^{2}+y^{2}+\frac{z^{2}}{4}=1
$$

Consider the point on the surface at $(1 / 2,0, \sqrt{3})$. Give the unit vector for which the directional derivative is maximized at this point and the value of this maximum. Give the unit vector for which it is minimized and the value of this minimum. Lastly, give a vector which maintains the z-value as $\sqrt{3}$.

Change of coordinates

Cylindrical to Cartesian:

$$
x=r \cos \theta, y=r \sin \theta, z=z
$$

Cartesian to cylindrical:

$$
r^{2}=x^{2}+y^{2}, \tan (\theta)=\frac{y}{x}, z=z
$$

Spherical to Cartesian:

$$
x=\rho \sin \varphi \cos \theta, y=\rho \sin \varphi \sin \theta, z=\rho \cos \varphi
$$

Cartesian to spherical:

$$
\rho^{2}=x^{2}+y^{2}+z^{2}, \tan (\varphi)=\sqrt{x^{2}+y^{2}} / z, \tan (\theta)=\frac{y}{x}
$$

Spherical to cylindrical:

$$
r=\rho \sin (\varphi), \theta=\theta, z=\rho \cos (\varphi)
$$

Cylindrical to spherical:

$$
\rho^{2}=r^{2}+z^{2}, \tan (\varphi)=r / z, \theta=\theta
$$

