MULTIVARIABLE CALCULUS
 EXAM 1
 SPRING 2021

Name:

Honor Code Statement:

Directions: You may OMIT one five point question; indicate which you omit by putting a slash through it. Justify all answers/solutions. Calculators, notes, texts and collaboration are not permitted. A formula sheet is on the last page. Best of luck!
(1) [5 points] Write a set of parametric equations for the line in \mathbb{R}^{4} through the points $(1,1,1,1)$ and ($1,2,3,4)$.

Date: March 25, 2021.
(2) [5 points] Find three vectors that are perpendicular to $\mathbf{i}-\mathbf{j}+\mathbf{k}$ such that no two of these are parallel.
(3) [5 points] Find the volume of the parallelepiped determined by

$$
\mathbf{a}=3 \mathbf{i}-\mathbf{j}, \quad \mathbf{b}=-2 \mathbf{i}+\mathbf{k}, \mathbf{c}=\mathbf{i}-2 \mathbf{j}+4 \mathbf{k} .
$$

(4) [5 points] Calculate the distance between the two planes:

$$
3 x-3 y+2 z=8,-12 x+12 y-8 z=0
$$

(5) [5 points] Let's try a short proof. Let a, \mathbf{b} be vectors in \mathbb{R}^{n}. Let's assume that $\|\mathbf{a}+\mathbf{b}\|=\|\mathbf{a}-\mathbf{b}\|$. You will prove that \mathbf{a} and \mathbf{b} are orthogonal by squaring both sides of the given equation, "multiplying out", and collecting like terms. Do this.
(6) [5 points] Draw a picture that illustrates the situation in the previous problem for when \mathbf{a}, \mathbf{b} are vectors in \mathbb{R}^{2}. (If you haven't yet given the above proof, you can still attempt this problem.)
(7) [10 points] Given the function $f(x, y)=\sqrt{x^{2}+y^{2}}$ sketch 3 level curves. Sketch or describe the surface.
(8) [5 points] Show that the following limit does not exist.

$$
\lim _{(x, y) \rightarrow(2,0)} \frac{x^{2}-y^{2}-4 x+4}{x^{2}+y^{2}-4 x+4}
$$

(9) [10 points] Give the equation of the tangent plane of the given function at the given point.

$$
f(x, y)=((x-1) y)^{2 / 3},(a, b)=(1,0)
$$

(10) [10 points] Consider the following function at the following point.

$$
f(x, y)=e^{y} \sin x, \mathbf{a}=\left(\frac{\pi}{3}, 0\right)
$$

(a) Compute the direction of steepest descent.
(b) Compute a direction for maintaining the current "altitude".
(c) Compute the directional derivative in the direction parallel to the vector $\mathbf{v}=\mathbf{i}-\mathbf{j}$.

Change of coordinates

Cylindrical to Cartesian:

$$
x=r \cos \theta, y=r \sin \theta, z=z
$$

Cartesian to cylindrical:

$$
r^{2}=x^{2}+y^{2}, \tan (\theta)=\frac{y}{x}, z=z
$$

Spherical to Cartesian:

$$
x=\rho \sin \varphi \cos \theta, y=\rho \sin \varphi \sin \theta, z=\rho \cos \varphi
$$

Cartesian to spherical:

$$
\rho^{2}=x^{2}+y^{2}+z^{2}, \tan (\varphi)=\sqrt{x^{2}+y^{2}} / z, \tan (\theta)=\frac{y}{x}
$$

Spherical to cylindrical:

$$
r=\rho \sin (\varphi), \theta=\theta, z=\rho \cos (\varphi)
$$

Cylindrical to spherical:

$$
\rho^{2}=r^{2}+z^{2}, \tan (\varphi)=r / z, \theta=\theta
$$

