MULTIVARIABLE CALCULUS
 EXAM 1
 SPRING 2018

Name:

Honor Code Statement:

Directions: Complete all problems. Justify all answers/solutions. Calculators, notes, texts and collaboration are not permitted. Best of luck.
(1) [10 points] Give an equation for the plane parallel to the plane $2 x-3 y+z=5$ that passes through the point $(-1,1,2)$. Also, find the distance between the given plane and point.

[^0](2) [10 points] Graph paper is available, which should improve your accuracy and conclusions you make. Determine and draw several say, at least four - level curves of the given function f (and make sure to indicate the height c of each curve).
$$
f(x, y)=\sqrt{x^{2}+y^{2}}
$$

Now give and draw four sections of the graph of f by planes of the form $y=c$, where c is a constant.

Use the above information to sketch the graph of f or describe it accurately in words.
(3) [5 points] Determine the following limit, if it exists. Hint: make a change of variable.

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}+x y+y^{2}}{x^{2}+y^{2}}
$$

(4) [5 points] State what it means for a function to be continuous.
(5) [3 points] Choose the correct term to describe the following set. $S:=$ $\left\{(x, y, z) \in \mathbb{R}^{3} \mid 1<x^{2}+y^{2}<4\right\}$. Terms: open, closed or neither. Justify your answer.
(6) [3 points] True or false? There exists two vectors in S whose cross product is also in S. Justify your answer.
(7) [4 points] Do there exist $\mathbf{p}, \mathbf{q}, \mathbf{r} \in \mathbb{R}^{2}$ with $\|p-q\|=\|q-r\|=1$ and $\|p-r\|=3 ?$
(8) [10 points] Consider the graph $z=x^{3}-7 x y+e^{y}$. Find the tangent plane at $(-1,0,0)$. Is this tangent plane a good linear approximation to the graph near the point of tangency? Why?
(9) [5 points] Use the product rule to find the derivative of the product of the following two functions: $f(x, y, z)=e^{x+y}$ and $g(x, y, z)=x y+x z+y z$.
(10) [10 points] Suppose that a bird flies along the helical curve $x=2 \cos t, y=$ $2 \sin t, z=3 t$. The bird suddenly encounters a weather front so that the barometric pressure is varying rather wildly from point to point as

$$
P(x, y, z)=\frac{6 x^{2} z}{y} \text { atm }
$$

Use the chain rule to determine how the pressure is changing at $t=\frac{\pi}{4}$.

Change of coordinates

Cylindrical to Cartesian:

$$
x=r \cos \theta, y=r \sin \theta, z=z
$$

Cartesian to cylindrical:

$$
r^{2}=x^{2}+y^{2}, \tan (\theta)=\frac{y}{x}, z=z
$$

Spherical to Cartesian:

$$
x=\rho \sin \varphi \cos \theta, y=\rho \sin \varphi \sin \theta, z=\rho \cos \varphi
$$

Cartesian to spherical:

$$
\rho^{2}=x^{2}+y^{2}+z^{2}, \tan (\varphi)=\sqrt{x^{2}+y^{2}} / z, \tan (\theta)=\frac{y}{x}
$$

Spherical to cylindrical:

$$
r=\rho \sin (\varphi), \theta=\theta, z=\rho \cos (\varphi)
$$

Cylindrical to spherical:

$$
\rho^{2}=r^{2}+z^{2}, \tan (\varphi)=r / z, \theta=\theta
$$

[^0]: Date: March 15, 2018.

