MULTIVARIABLE CALCULUS
 EXAM 1
 FALL 2019

Name:

Honor Code Statement:

Directions: Complete all problems. Justify all answers/solutions. Calculators, notes, texts and collaboration are not permitted. A formula sheet is on the last page. Best of luck.
(1) [5 points] Find three nonparallel vectors that are perpendicular to $\mathbf{i}-\mathbf{j}+\mathbf{k}$.
(2) [5 points] Use the cross product to find the area of the triangle determined by the vectors $\mathbf{a}=(1,-2,6)$ and $\mathbf{b}=(4,3,-1)$.

Date: October 10, 2019.
(3) [5 points] Calculate the distance between the two parallel planes

$$
5 x-2 y+2 z=12
$$

and

$$
-10 x+4 y-4 z=8
$$

(4) [2 points] In one sentence, explain how one can tell these two given equations yield parallel planes.
(5) [6 points] The following expressions are "nonsense", that is, these are undefined. Make the smallest number of changes possible to each expression, restricting yourself to the insertion, deletion or replacement of a binary operation, so that the expression now has meaning. Indicate whether your new expression is a scalar, a vector or something else.

- $(\mathbf{a} \cdot \mathbf{b}) \cdot \mathbf{c}$
- $(\mathbf{a} \cdot \mathbf{b}) \times(\mathbf{c} \cdot \mathbf{d})$
- $(\mathbf{a} \cdot \mathbf{b}) \times(\mathbf{c} \times \mathbf{d})$
(6) [4 points] Write what it means to say for a scalar-valued function f to be differentiable at $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)$.
(7) [10 points] Consider the surface in \mathbb{R}^{3} determined by the following equation, $z=y^{2}+2$.. (Yes, you read it correctly. This is a surface in \mathbb{R}^{3} and x does not appear in the equation.) Sketch 3 level curves. Sketch two sections of the graph of f by the plane $x=c$. Sketch two sections of the graph of f by the plane $y=c$. Sketch or describe the surface.
(8) [6 points] Calculate the following limit by first change from Cartesian coordinates to polar coordinates.

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}-y^{2}}{\sqrt{x^{2}+y^{2}}}
$$

(9) [6 points] Find an equation for the hyperplane tangent to the 4 -dimensional paraboloid

$$
x_{5}=10-\left(x_{1}^{2}+3 x_{2}^{2}+2 x_{3}^{2}+x_{4}^{2}\right)
$$

at the point $(2,-1,1,3,-8)$.
(10) [6 points] Fill in the blank. Suppose that two surfaces are given by the equations $F(x, y, z)=c$ and $G(x, y, z)=k$. Further, suppose that the surfaces intersect at the point $\left(x_{0}, y_{0}, z_{0}\right)$. The surfaces are tangent at $\left(x_{0}, y_{0}, z_{0}\right)$ if and only if the tangent planes at $\left(x_{0}, y_{0}, z_{0}\right)$ are the \qquad if and only if the \qquad vectors at $\left(x_{0}, y_{0}, z_{0}\right)$ are parallel if and only if $\nabla F\left(x_{0}, y_{0}, z_{0}\right) \times \nabla G\left(x_{0}, y_{0}, z_{0}\right)$ equals \qquad .
(11) [5 points] Find the directional derivative of $f(x, y, z)=\frac{x e^{y}}{3 z^{2}+1}$ at the point $\mathbf{a}=(2,-1,0)$ in the direction parallel to the vector $\mathbf{u}=\mathbf{i}-2 \mathbf{j}+3 \mathbf{k}$. Is there a direction for which the directional derivative is larger?
(12) [5 points] The following page shows a "proof" of the Cauchy-Schwarz Inequality. One of the inequalities is circled. Explain why this circled inequality is true 3 sentences maximum

Change of coordinates

Cylindrical to Cartesian:

$$
x=r \cos \theta, y=r \sin \theta, z=z
$$

Cartesian to cylindrical:

$$
r^{2}=x^{2}+y^{2}, \tan (\theta)=\frac{y}{x}, z=z
$$

Spherical to Cartesian:

$$
x=\rho \sin \varphi \cos \theta, y=\rho \sin \varphi \sin \theta, z=\rho \cos \varphi
$$

Cartesian to spherical:

$$
\rho^{2}=x^{2}+y^{2}+z^{2}, \tan (\varphi)=\sqrt{x^{2}+y^{2}} / z, \tan (\theta)=\frac{y}{x}
$$

Spherical to cylindrical:

$$
r=\rho \sin (\varphi), \theta=\theta, z=\rho \cos (\varphi)
$$

Cylindrical to spherical:

$$
\rho^{2}=r^{2}+z^{2}, \tan (\varphi)=r / z, \theta=\theta
$$

