MULTIVARIABLE CALCULUS
 EXAM 1
 FALL 2014

Name:

Honor Code Statement:

Directions: Complete all problems. Justify all answers/solutions. Calculators, notes, texts and collaboration are not permitted. Best of luck.
(1) [5 points] Give a set of parametric equations for the line through $(5,0,6)$ that is perpendicular to the plane $2 x-3 y+5 z=-1$.

[^0](2) [5 points] Find a value for A so that the planes $8 x-6 y+9 A z=6$ and $A x+y+2 z=3$ are parallel.
(3) [5 points] Find the distance between the two planes from the previous problem.
(4) [5 points] Briefly explain why the following set is not open: $X=\{(x, y)$: $1 \leq x \leq 2,1 \leq y<3\}$.
(5) [5 points] State what it means for a scalar-valued function to be smooth.
(6) [5 points] A function $f(x, y)$ has $f(1,2)=3$ and $\lim _{(x, y) \rightarrow(1,2)} f(x, y)=4$. Does this tell you anything about the differentiability at $(1,2)$? What? Justify your answer.
(7) [10 points] Determine (and draw) several - say, at least four - level curves of the given function f (and make sure to indicate the height c of each curve).
$$
f(x, y)=|x|
$$

Now give (and draw) four sections of the graph of f by planes of the form $y=c$, where c is a constant.

Use the above information to sketch the graph of f or describe it accurately in words.
(8) Find an equation for the hyperplane tangent to the 4-dimensional paraboloid $x_{5}=10-\left(x_{1}^{2}+3 x_{2}^{2}+2 x_{3}^{2}+x_{4}^{2}\right)$ at the point $(2,-1,1,3,-8)$.
(9) [5 points] Let $\mathbf{g}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be a differentiable functions such that $\mathbf{g}(1,-1,3)=$ $(2,5)$ and $D \mathbf{g}(1,-1,3)=\left[\begin{array}{ccc}1 & -1 & 0 \\ 4 & 0 & 7\end{array}\right]$ Suppose that $\mathbf{f}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is denied by $\mathbf{f}(x, y)=(2 x y, 3 x-y+5)$. What is $D(\mathbf{f} \circ \mathbf{g})(1,-1,3)$?
(10) Consider a surface with height $f(x, y)=10-x^{2}-y^{2}$,

- Find the direction to head if starting at the point $(1,2,5)$ if you wish to experience steepest descent.
- Now find the path of steepest descent starting from this point.
(11) [5 points] Use the Cauchy-Schwarz inequality to prove that for real numbers d_{1}, \ldots, d_{n} we always have

$$
d_{1}^{2}+\ldots+d_{n}^{2} \geq \frac{\left(d_{1}+\ldots+d_{n}\right)^{2}}{n}
$$

[^0]: Date: October 9, 2014.

