MULTIVARIABLE CALCULUS
 EXAM 1
 FALL 2013

Name:
Honor Code Statement:
Directions: Complete all problems. Justify all answers/solutions. Calculators, notes, texts and collaboration are not permitted. Best of luck.
(1) [5 points] Find the angle between the following two non-zero vectors: $2 \mathbf{i}+$ $\mathbf{j}-3 \mathbf{k}$ and $\mathbf{i}+\mathbf{k}$.
(2) [5 points] State the Triangle Inequality. Indicate under what conditions equality holds.

[^0](3) [10 points] Give an equation for the plane containing the following three non-collinear points $(1,0,0),(0,5,0),(0,0,2)$.

Now give the set of parametric equations for this plane.
(4) [10 points] Determine (and draw) several - say, at least four - level curves of the given function f (and make sure to indicate the height c of each curve).

$$
f(x, y)=4 x^{2}+9 y^{2}
$$

Now give (and draw) four sections of the graph of f by planes of the form $x=c$, where c is a constant.

Use the above information to sketch the graph of f.
(5) [5 points] Use a change of coordinates to polar coordinates to find the following limit. (Recall that $x=r \cos (\theta), y=r \sin (\theta)$ and $r^{2}=x^{2}+y^{2}$ and $\tan (\theta)=\frac{y}{x}$ are the polar to cartesian and cartesian to polar change of coordinates, respectively.) Hint: $-1 \leq \cos (\theta) \leq 1$.

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{3}+x^{5}}{x^{2}+y^{2}}
$$

(6) [10 points] Find an equation for the plane tangent to the graph of $f(x, y)=$ $4 \cos (x y)$ at the point $\mathbf{a}=(\pi / 3,1,2)$.

This tangent plane is a good linear approximation of f near a only if f is differentiable at \mathbf{a}. Since the existence of the above plane doesn't guarantee differentiability, how can you be sure that f is differentiable at \mathbf{a} ?
(7) [5 points] Calculate $D(f \circ \mathbf{g})$ in two ways: (a) by first evaluating $f \circ \mathbf{g}$ and (b) by using the chain rule and the derivative matrices $D f$ and $D \mathbf{g}$.

$$
f(x, y)=x^{2}-3 y^{2}, \mathbf{g}(s, t)=\left(s t, s+t^{2}\right)
$$

(8) [5 points] Suppose that the four vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$, and \mathbf{d} in \mathbb{R}^{3} are coplanar (i.e., they all lie in the same plane). Show that then $(\mathbf{a} \times \mathbf{b}) \times(\mathbf{c} \times \mathbf{d})=\mathbf{0}$.

[^0]: Date: October 10, 2013.

