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Abstract

We study the behavior of subjects facing choices between certain, risky, and ambiguous lotteries.
Subjects’ choices are consistent with the economic theories modeling ambiguity aversion. Our results
support the conjecture that subjects face choice tasks as an estimation of the value of the lotteries, and
that the difficulty of the choice is an important explanatory variable (in addition to risk and ambiguity
aversion).

The brain imaging data suggest that such estimation is of an approximate nature when the choices
involve ambiguous and risky lotteries, as the regions in the brain that are activated are typically
located in parietal lobes. Thus such choices require mental faculties that are shared by all mam-
mals, and in particular are independent of language. In contrast, choices involving partial ambiguous
lotteries additionally produce an activation of the frontal region, which indicates a different, more
sophisticated cognitive process.
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1. Introduction

“The mental operations by which ordinary practical decisions are made are very ob-
scure, and it is a matter of surprise that neither logicians nor psychologists have shown
much interest in therfFrank Knight, 1921, Chapter 7)".

1.1. Risk and uncertainty

In Risk, Uncertainty and Profifrank Knight (1921) introduced a distinction between
risk and uncertainty. He called a choice environnmsity if the outcome is random, but
the person making the choice can reasonably attach a numerical probability to each event.
He called ituncertainif the subject cannot define uniquely and precisely such numerical
probability. For example, if the probability of the events are described “objectivess’
in tossing a coin or rolling a die, then it is natural to expect that the subject will attach
probabilities to events equal to the objective ones. On the other hand, in a situation of
uncertainty the subject may have no reasonable estimate of the frequency of the events,
say, because the event or choice he is asked to consider is a of a unique, once-and-for-all
nature.

The basis of the difference derives in Knight's view from the way in which estimates
of probabilities are derived. In the case of risk, the probability distribution over possible
outcomes is known. This may be due to an a priori calculation (as in the case of the roll
of a die) or frequency estimation. On the other hand, this knowledge is not available in the
case of uncertainty, either because no obvious list of equally likely and exhaustive basic
alternatives is available or “because the situation is in high degree unique” (Knight, 1921,
Chapter 8).

This point of view may seem outdated in view of the rise, in the years to follow Knight's
book, of the subjectivist approach to probability of Ramsey, de Finetti and Savagke
classical theory of choice under uncertainty called “Subjective Expected Utility” (SEU for
short)—the most complete treatment of which is the axiomatic formulation by L.J. Savage
(1954)—such distinction vanishes. In SEU theory, it is assumed that the subject is able to
provide a subjective probabilistic estimate of the relative probability of each event. Once
he has done that, the evaluation of a lottery (or, more generally, a state-contingent payoff
function) is the same under risk or uncertainty: It is the expected value, computed with
respect to this probability. Therefore, in terms of the Knightian distinction, according to
SEU theory all uncertainty can be reduced to risk.

1 Knight (1921, Chapter 8) states that the terms objective and subjective are equivalent to those of risk and
uncertainty, but this identification may be confusing today.
2 The first draft of the book was Knight's doctoral dissertation at Cornell, 1915-1916.



A. Rustichini et al. / Games and Economic Behavior 52 (2005) 257-282 259

However, in their actual behavior human subjects may fall short of the expectations
of theorists. Indeed, among scholars of economics and decision making there has been a
resurgence in the interest on Knight’s distinction motivated by a very interesting critique
of SEU theory formulated by Daniel Ellsberg (1961). Moreover, we will argue in this
paper that the distinction may acquire more interest in light on the surging attention on
the mental process that the subject follows to formulate his estimate of the likelihood of
events.

1.2. Ellsberg’s “paradox”

Ellsberg (1961) begins with the Knightian distinction, using the now more customary
termambiguityinstead of Knight’s “uncertainty.” Rather than trying to base the distinction
on the way in which the probabilities are estimated, he accepts the purely subjective view
of Ramsey, de Finetti and Savage: “The degree of a belief is the extent to which we are
prepared to act upon it” (Ramsey, 1926). That is, whether subjects are able to attach numer-
ical probability or not to two events can only be measured by their choices over acts based
on these events. If subjects are willing to give us an answer to every choice we propose
them, and provided that their answers are consistent, this measurement is unambiguously
defined.

His classical thought experiment is the first attempt to test whether there is a significant
difference between ambiguity and risk. In his experiment, subjects face the choice among
lotteries, where the outcome is described by draws of balls from an urn. For an urn with
Red, Black and Yellow balls, | can define a lottery as three numbers, assigning, say, a mon-
etary amount to each of the three outcomes. The proportion of the balls, however, is not
completely specified: For example, in his classical design, an urn has 90 balls, of which 30
are Red and 60 are Black and Yellow, with the relative number of Black and Yellow balls
unspecified. So the subject is not provided with an objective probability: Does he always
provide his own, well-specified, subjective probability over the different outcomes, as SEU
theory requires?

Ellsberg'sexperiment:3 The experimenter tells the subject that an urn has the composi-
tion of Red R), Black (B) and Yellow () balls as described above. Then, the subjectis
asked to choose between the lotterieendb whose payoffs (in dollars) are determined
according to the following table:

After the subject has made this choice, the experimenter asks him to choose between
the lotteriesc andd defined by the following:

3 Though Ellsberg by his own admission tried his experiment under “absolutely non-experimental conditions,”
this pattern of choices has been observed in a multitude of properly conducted experiments. See, e.g., Luce (2000)
for references to this vast literature.
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R B Y
c|100 0 100
d| 0 100 100

Most subjects choosein the first pair of lotteries, and in the second. This is a viola-
tion of SEU theory. The intuitive reason is clear: If you are a SEU decision maker, and
choosez in the first choice you must think that the outcome Yellow ball is more likely.
But then this fact should make you choasaotd in the next choice.

Thus, the typical subject of Ellsberg’s experiment does not form a subjective proba-
bility for each event, even upon reflection, and even after interrogation or prodding by
unsympathetic criticé.In fact, if the assumption that the subject estimates the different
alternatives on the basis of some form of expectation is maintained, his choices show that
such unique subjective probability cannot exist. When this occurs, we say that the subject’s
choices displayambiguity aversior(or love). Clearly, it is the absence of a well-defined
objective probability in the experimental design that provides the conditions for ambiguity
aversion/love to manifest itself.

The inability of subjects to form an estimate of the probability of different events was,
until recently, a controversial issue mainly for scholars in economics. It may acquire larger
interest now that neuro scientists have entered into this specific arena. A basic assumption
of their program is that the two fundamental operations defining expected utility (the es-
timate of a probability and the estimate of value) have a neural basis. These are physical
computations, performed by neurons. If subjects reveal with their choices that a unique
probability does not exist, how can this operation have a neural basis? What is ambiguity
aversion telling us about the psychological and neurological processes underlying deci-
sions? Note that subjects in Ellsberg’s experiments typickadighoose one of the lotteries.

So some decision process must have taken place. If the outcome is not consistent with
the evaluation of expected utility with respect to a probability distribution, what was the
process? For example, when Ellsberg introduces ambiguity as an explanation of his exper-
imental observations, he explicitly notes it as a third component, in addition to probability
and value, in the evaluation of a possible acfion.

In light of the experimental robustness of ambiguity aversion, economists have devel-
oped extensions of SEU theory which incorporate this third component in a subject’s
decision rule. One of the most popular extensions is the so-called “Maxmin Expected
Utility with multiple priors” (MEU for short) model of Gilboa and Schmeidler (1989). Ac-
cording to this model, the subject’s beliefs are given Isgtof probabilities (equivalently,
the subject’s beliefs on each event are given by an interval, rather than point, estimate).

4 These are called “deliberate violators” by Elisberg (1963). Among them, Elisberg reports, L.J. Savage.

5 He says (Ellsberg, 1961, p. 657):
“Responses from confessed violators indicate that the difference is not to be found in terms of the two factors
commonly used to determine a choice situation, the relative desirability of the possible payoffs and the relative
likelihood of the events affecting them, but in a third dimension of the problem of choice: the nature of one’s
information concerning the relative likelihood of the events.”
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The subject chooses the action whose worst-case expected utility evaluation (the minimum
expected utility ranging over the set of possible probabilities) is highest.

1.3. The psychological nature of ambiguity aversion

Ellsberg’s paradox suggests that the Knightian distinction is substantial—and moreover
that not all uncertainties can be reduced to risk—by proving that there is a difference
in the behavior of subjects in choices under risk and choices under uncertainty. While
the existence of the difference seems demonstrated, some still doubt its substance and
importance. For instance, they argue that subjects might be confused. Deliberate violators
might give up their violations facing a tighter experimental design (for instance, with an urn
placed in front of their eyes during the entire experiment). Or, in the experimental situation
in which ambiguity aversion appears, subjects might be simply exhibiting mistrust toward
the experimenter.

The question we address in this paper is to determine experimentally whether there is a
fundamental psychological difference between the two. We do this by analyzing the deci-
sion process; i.e., the sequence of different activities that are performed in taking a decision.

1.4. Decisions and emotions

Evidence from neuroscience suggests that choices under risk and ambiguity might be
fundamentally different from the psychological point of view. In a series of classical papers
and books, Antionio Damasio and his group have suggested that emotional components en-
ter ambiguous choices in a crucial way. The evidence for this statement, which is reviewed
more in detail later, is both clinical and experimental.

The clinical evidence is provided by a set of human subjects with lesions in the pre-
frontal cortex. These subjects are well known to have difficulties both in expressing and
forming emotions, as well as in taking decisions. However they are not in any significant
way impaired in their intellectual, cognitive and memory abilities.

Human subjects choosing a deck out of a set of card decks provide the experimental
evidence. A payoff, real or hypothetical, is associated with each card, according to a prob-
ability that is not completely specified to the subjects. They are asked to choose one of
the card decks; once they choose, they draw a card from the deck, examine the card, and
discover the payoff of that card. Then, they proceed to the next choice. Just as in the case of
the Ellsberg’s urn, the experimenter does not provide the subject with a complete descrip-
tion of the stochastic process he is facing. The truth is that some of the decks have higher
gains, but also higher losses, while others have lower gains as well as lower losses. The
expected value of the first is lower than the second. The observation is that normal subjects
tend over time to switch to the safer decks, while the choices of patients with frontal lesions
converge to the first. Test of the emotional reactions to choices are also revealing: in the
moments preceding the choice of the risky decks normal subjects show an active Galvanic

6 In Ellsberg’s experiment, a subject whose set of probabilities is given bfsauch thatP(R) = 1/3 and
P(B) > 1/4 would make the typical ambiguity averse choices.
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Skin Response (a measure of emotional reactions), while patients do not. The conclusion
is also supported by brain imaging studies of subjects while making choices in the card
decks experiment. Decision making, as Antoine Bechara and Antonio Damasio conclude
(Bechara and Damasio, 2003), is a process driven by emotions.

1.5. Choices and emotions

On the other hand, subjects in the card deck experiment are performing several tasks at
the same time they are choosing between alternatives: but they are also learning about the
environment that they are facing, and they are receiving, after every choice, a feedback on
their wins or losses. The involvement of emotional factors might therefore occur for any of
these three different reasons.

Our experimental design aims at separating the choice from the learning and the payoff
feedback, and tests the processes that are active in the presence of ambiguity. Our conclu-
sion is that choice is a process driven by cognitive factors, even within those subjects that
in the experiment unambiguously display ambiguity aversion.

1.6. Our experiment

The long-term aim of the research reported here is to identify and test a theory of how
subjects actually reach their decisions. We think it is advisable, in this first phase of the
research, to focus on the analysis of simple decisions, based on the choice between pairs
of economic stimuli. Consequently, we chose a decision problem in line with the original
Ellsberg’s thought experiment (Ellsberg, 1961). We did not expect the choice behavior of
subjects to be different from that predicted by existing “as if” theories of choice under risk
and ambiguity, like the MEU model mentioned above. In fact, the analysis of the choice
data in section below shows that they were not.

A second element in our choice of design was the introductiorpafially ambiguous
lottery. In a risky lottery the subject knows the objective probability of outcomes, in an
ambiguous lottery he has no information on this probability. In a partially ambiguous he
hassomeinformation. The partially ambiguous lottery is locaté@m a choice-theoretic
point of view in an intermediate position between risky and ambiguous lottery. We will
argue, however, that from a procedural point of view it has a very specific nature, so that
the behavior of a subject facing a partially ambiguous lottery is very different. This is
indeed what the analysis of the data on response times and the imaging data suggest.

1.7. Content of the paper

In Section 2 we describe the experimental design. In Section 3 we present and discuss
the behavioral data. More precisely, in Section 3.1 we examine the choices made by the
subjects in different conditions, while in Section 3.2 we focus on the response time; namely
the time used by the subject to reach each decision. In Section 4 we present and interpret
the brain-imaging data in the light of information available in the neuroscience literature
on the significance of the different patterns and centers of neural activation. Finally, in
Section 5 we draw our conclusions and outline the future research agenda.
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2. Experimental design

Subjects were instructed to make a sequence of choices between pairs of lotteries. The
pairs were presented in groups of similar choices, and no feedback on the outcome was
provided during the test. Outcomes and payments were determined at the end.

2.1. Lotteries

In the entire experiment, four different types of lotteries were used: certain (C), risky
(R), partially ambiguous (PA) and ambiguous (A) lotteries. Subjects were informed that
the payoff to such lotteries would eventually be determined by the draw of a ball, which
could be either blue or red, from an urn containing 180 balls. The number of balls of each
color was to be consistent with the information given about the lottery, as specified below.
Overall subjects had to make 96 choices. The actual payments were decided at the end
of the experiment. First, 4 out of the 96 choices were randomly selected according to a
uniform distribution’! We then checked which of the two lotteries had been selected in
these choices, filled a real urn with balls consistently with the subject’s information and
asked the subject to pick one of the balls, while keeping the urn above his/her head. The
subject was then paid the total of the payments for the four choices.

The pair of lotteries in each choice was presented on a screen, indicating the number of
balls for each color and the amount in dollars that (a draw of a ball of) each color would
pay. The only exception was the certain lottery, for which the screen simply indicated a
fixed amount in dollars. Subjects knew that the urn always contained a total of 180 balls.
In the R lottery they were told that the urn would contain 90 balls of each color. For the
A lottery no information on the number of balls of either color was given (only that the
balls could only be red or blue). Finally, for the PA lottery they were told that the urn
would contain at least 10 balls of each color, leaving the composition of the remaining 160
unspecified (but again, that they could only be blue or fed).

2.2. Choices

In each choice, it is useful to classify one of the two lotteries asrthin lottery and

the other as theeferencelottery. The main lottery was either risky, partially ambiguous

or ambiguous. Thus, subjects were faced with increasing levels of ambiguity: From no
ambiguity in the risky lottery to full ambiguity in the ambiguous one. The main lottery was
to be compared to the reference lottery, which could be either risky or certain. We used all
possible combinations of main and reference lotteries to obtain six types of choices, the
conditionsin our experiment. Each condition is denoted by the type of its lotteries: For
example, the condition PAC faces the subject with a choice between a partially ambiguous

7 The small number aims at making each subject’s choices close to his true preference over the lotteries in-
volved. With a large number, a subject might use a strategy over the entire portfolio of choices that would make
the optimal lottery in each choice different from the one he would select if facing that specific choice in isolation.

8 For the sake of determining a subject's actual payoff, the actual urn compositions in the A and PA case were
chosen randomly.
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lottery (PA, the main lottery), and a certain lottery (C, the reference lottery). The condition

AR faces him/her with the choice between an ambiguous and a risky lottery, and so on.
Overall we had three conditions where the reference lottery was of the R type (the R-
conditions RR, PAR, AR), and three where the reference lottery was of the C type (the
C-conditions RC, PAC, ACY.

2.3. The lotteries

A detailed description of the different lotteries is provided in Appendix B. Here we
point out some specific features of the set of choices we used, because understanding them
is essential in the interpretation of the results.

In the C condition subjects are comparing a certain amount (ranging from a minimum
of 10 dollars to a maximum of 50) with either a risky, partially ambiguous, or ambigu-
ous lottery. In the R condition the reference lottery is a risky, rather than certain, lottery:
this choice may appear more difficult, but not necessarily in the specific setup we adopted.
In fact, the reference lottery in fadbminateghe main lottery, in the following sense. In
the RR choice, the main lottery is a mean-preserving (variance-increasing) spread of the
reference lottery. For example, the main lottery has pay@#0), while the reference
lottery has payoff§60, 4), with an equal probability for each type of ball. In the AR and
PAR conditions, this negative effect is compounded by the ambiguity associated with the
main lottery. For example, the reference lottery has pay@fs4) with fifty—fifty proba-
bility, while the main lottery has payofi®4, 0) for red and blue balls respectively, with an
unspecified proportion of red and blue balls.

The joint effect of risk and ambiguity should therefore make the choice of the main
lottery look inferior to a subject who is averse to risk and ambiguity. In addition, this com-
parison should involve simple qualitative reasoning, rather than quantitative comparisons.
On the other hand, the choice in the C conditions involves a quantitative comparison, since
an estimate of the value of the main lottery is compared with the certain value of a C-type
lottery. As we are going to see, this difference between the two R and C conditions is also
suggested by our experimental observations.

2.4. Time sequence

Each subject experienced the six conditions (RC, PAC, AC, RR, PAR and AR) that we
have just described, plus two with Eyes-Closed-Rest (ECR). The conditions and the set of
choices in each condition were the same for each subject. The order in which the conditions
were presented, and the order of choices within each condition, was determined randomly
and independently for each subject.

9 The names “main” and “reference lottery” are used here for expository purposes only. These names were never
used in the experiment, and neither were the labels “certain,” “risky,” “partially ambiguous” and “ambiguous.”
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2.5. Imaging technique

The imaging study was conducted using the PET (Positron Emission Tomography)
scanning technique. General information on the technique is given in Appendix C, together
with a more detailed description of the technique used in the study.

2.6. Implementation

The original sample was composed of 12 young healthy right-handed individuals, cho-
sen among those answering a public announcement posted on campus. One of the subjects
had to be excluded from the sample after post experiment interviews determined a state of
depressiot; for a second the data on scanning were lost for technical reasons. Therefore,
the data in this study refer to the sub-sample of 10 individuals.

Subjects came in separately, on different days. We first paid each subject 50 dollars
in cash. This show-up award was never at risk during the experiment. We then read the
instructions. The instructions were very detailed; we also asked the subjects to answer
short quiz questions during the presentation to check their understanding. Detailed and
careful instructions were intended to make the subject familiar with the four different types
of lotteries and the six different conditions. We presented a set of examples, and asked
the subject to choose among the lotteries in the example. This also served the purpose of
familiarizing the subjects with the method of expressing their choice, a click on the left or
right button of a mouse.

After the instructions, the subjects were moved and were positioned in a scanner.
Choices were made while the brain activity of the subject was scanned. We had 15 choices
for each R condition and 17 choices for each C condition, for a total of 96 choices per
subject. A choice appeared on the screen, and subjects had six seconds to decide. The time
interval between choices was fixed, and independent from the moment in which the choice
was made. A pause of two seconds would follow the end of each choice, and then the next
choice would be displayed on the screen (so the overall time interval between choices was
eight seconds). The time interval between the different conditions varied between two to
four minutes, since a new condition could begin only when the scanner was ready for the
next analysis. For each subject, the entire experiment lasted approximately two hours.

3. Behavioral data
3.1. Choices

3.1.1. The C conditions

The observed choices in the C conditions tend to follow a rather regular cutoff policy.
Each subject chooses the R, PA or A lottery rather than the C lottery when the certain
amount is below a threshold (which varies with the subject), and switches to the C lottery
when the threshold is passed.

10 This is standard procedure: the data from depressed subjects are not considered reliable.
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Table 1

Summary statistics for the cutoff in the C conditions

Variable Obs. Mean Std. err. 95% conf. int.
AC cutoff 170 22.7 0.439 [21.83,23.56]
PAC cutoff 165 21.7 0.3769 [20.95, 22.44]
RC cutoff 153 28.11 0.217 [27.68, 28.54]
Table 2

Choices in the C conditions

Subject 27 29 40 44 52 53 55 59 68 71 Average Median
Cutoff in RC 25 25 25 33 31 30 28 28 28° 2811 28
Deviations from cutoff 0 0 0 2 3 3 3 0 17" 1.33

Cutoff in PAC 20 25 15 32 20 30 20 20 15 25 .21 20
Deviations from cutoff 0 0 0 1 2 0 2 1 0 0 ®

Cutoff in AC 20 20 15 31 30 28 20 28 15 20 22 20
Deviations from cutoff 0 0 0 2 0 0 0 0 0 1 9

PAC-AC 0 5 0 1 -10 -3 0 -8 0 5 -1

* Denotes missing data.

Estimates of the cutoff point are summarized in Tabté The cutoff value is chosen for
each subject so as to minimize the number of deviations, for that subject, of the observed
choices from the cutoff polic}?

Table 2 shows that subjects were consistent in their choices, and that the instances of
deviations from the policy implicitly described by the cutoff are small in number.

The bottom row of Table 2 reports the differences in the value of the cutoff for PAC and
AC conditions. The differences are zero or small: this indicates that the choices of the same
subject are consistent across conditions. The “Mean” column of Table 1 and the last row of
Table 2 show that the values of the cutoffs in the two conditions PAC and AC are similar.

3.1.2. The R conditions

Table 3 reports the number of times each subject chose the risky reference lottery in
the R conditions. Subjects chose the riskier lottery (the one with the greater spread) most
frequently (but still only 147 percent of the times) in RR, and less frequently in PAR and
AR (approximately the same in the two conditions).

3.1.3. Summary of the analysis of choices
Overall, the observed choices of the subjects are those predicted by widely accepted
theories of choice in risky and ambiguous environments, like the MEU model. Between

11 some of the data are missing because either the subject did not choose in the amount of time available, or
because of an error in recording the answer, for subject number 71.

12 More precisely, the cutoff has been determined according to the following rutepdicy is the policy of
choosing the C lottery if its value is larger or equattd-or each of the possible valuesotietermine the number

of deviations from the--policy in the observed choices of the subject. Choose tthat minimizes the number

of deviations. If the value of thig is among the values at which the subject expressed indifference, choose the
middle if the number of such values is odd, and the next one in ascending order if the number is even.

13 Subjects are indicated by the classification number in data archive of the Veterans Affairs Medical Center.
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Table 3

Choices of the main lottery in the R conditions

Subject 27 29 40 44 52 53 55 59 68 71 total %
RR 0 4 0 3 0 6 1 6 2 22 147
PAR 1 0 0 4 0 1 1 4 1 0 12 8
AR 1 2 0 2 2 3 1 3 0 0 14 3

* Denotes missing data.

two lotteries, where one is a mean-preserving spread of the other, the subjects chose
consistently and almost exclusively the lottery with smaller variance. Subjects were also
ambiguity averse. This is hard to detect in the R conditions where the choice is already al-
most entirely of the lottery with smaller variance. But in the C conditions, the mean cutoff

is six to seven dollars higher when the main lottery is R than it is when the main lottery is
A or PA (see Table 1).

3.2. Response times

Theresponse timéRT) is the length, in 1000th of a second (msc), of the time interval
between the moment in which the stimulus (the two lotteries) appears on the screen and
the moment in which the subject clicks on the mouse making the choice. Tables 4 and 5
below present the first surprise. They show the average response time, taken over subjects
and different choices in the same condition, together with some summary stafistics.

The response time is approximately half of a second (that is, 25 percent) longer in the
R conditions than in the C conditions. Among the C conditions, the fastest decisions were
made in the AC and PAC conditions. The slowest decisions were made in the corresponding
R conditions, namely AR and PAR. This disparity in response time suggests that subjects
approached the two conditions with different mental processes.

Table 4

Average response times (RT) in the R conditions

Variable Obs. Mean Std. err. [95% conf. interval]
RTin AR 147 2776.95 87.24 [260452, 294937]

RT in PAR 165 2741.74 94.58 [255485,292864]
RTinRR 148 2723.27 92.00 [254145,290510]
Table 5

Average response times (RT) in the C conditions

Variable Obs. Mean Std. err. [95% conf. interval]
RT in AC 170 1947.60 65.98 [1817.34,207785]

RT in PAC 165 2196.72 76.32 [204601, 234742]

RT in RC 153 2534.43 84.38 [2367.70,270116]

14 The number of observations is different across conditions. This happens for two reasons. First, some of the
observations were lost for technical reasons. Second, the number of choices in the R condition were 15, and 17
in the C condition.
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3.2.1. Difficult decisions and learning

Several factors may affect the length of time a subject needs to make a choice. Some
insight into the determinants of this time (and hence on the decision process itself) can be
obtained by a simple regression. A detailed report of these results is presented in Tables A.1
and A.2.

3.2.2. LearninginC

Consider first the C conditions. We use two variables. The varidibtritis defined as
the absolute value of the difference between the value of the certain lottery and the cutoff
point that we have estimated for the subject. When the distance is very small, the subject
is probably almost indifferent between the two alternatives, so in terms of the utility to
the subject the decision is less important. On the other hand, the conclusion that s/he is
indifferent is the outcome of a real life decision process, rather than its starting point. To
reach this outcome, the subject might need less time when the value of the certain lottery is
farther from the cutoff point, since in this case even an approximate estimate of the value of
the main lottery will suffice. This finding, that response time increases as the certain value
gets closer to the cutoff, is in line with what a procedural model of choice would predict.

A second variable is the integer-valuedier, describing the order in which the choice
has been presented to the subject in the same condition. If some form of learning takes
place, then the response time will fall as the subject is facing choices that are becoming
familiar.

The coefficient for the distance from the cutoff poidiscu) is significant in the three
C conditions, and has a negative sign. This is what we would expect to see if the task of
deciding involves a significant comparison of two quantities, in our case the value of the
certain lottery and some estimate of the value of the main lottery. This is also in agreement
with the findings in purely cognitive studies. A strong non-linearity, with the response time
increasingly in steep way as the term of comparisons are closer is well documented in
cognitive psychology and neuro psychology (see for instance Pinel et al., 2001).

There are some interesting differences among conditions. dstiutandorder have
significant coefficients in the regression for the PAC condition. The coefficient for the
variablediscutis —56 msc per dollar, (with a-value < 0.0001), the coefficient for the
order variable is—21 per unit p-value < 0.039). On the other hand, there is no significant
difference in the latter coefficient if one estimates separately the initial and later choices.
This indicates a regular, progressive learning, rather than a two-stage process—with an
initial stage where subjects decide a policy in the form of a cutoff and a second stage in
which they simply implement the policy. Thdiscutvariable has a significant coefficient
in the AC and RC conditions as well, but the coefficient in AC is significantly smaller than
in the PAC condition. Therder variable is less significant, or insignificant, in the RC and
AC cases respectively.

3.2.3. LearninginR

Here we consider three variables. The firstasug the expected value of the reference
lottery, which ranged in the experiment between 30 and 40. The secomdkis with the
same meaning as in the previous section. The third and laatisnce a dummy variable
with values—1, 0, 1 indicating the low, medium and high variance in the reference lottery.
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Only the variablevarianceis significant, at least in the PAR and in the RR condition. The
lack of learning is in agreement with the idea that the conditions where R is the reference
lottery are easier. However, it makes the length of the response time in these very conditions
even more surprising.

3.2.4. What operations do the subjects do?

The average value of the response time and the way it changes over the course of the
trial can give some information on the type of operations subjects are performing. It is
useful to compare our data with those for subjects performing a “pure” cognitive task.

In Spelke and Tsivkin (2001), the authors conduct a careful study of the response time
for addition of two-digit integer numberS. They study both approximate and exact op-
erations. In the exact addition treatment subjects had to decide between the right answer
and a distractor where the tens place was increased or decreased by 1. In the approximate
addition treatment the problem was the same, but the candidate answers were multiples of
10, with the most distant answer 30 units more distant than the value closest to the correct
answer. The average response time in both cases is (before training) between 4 and 4.5
seconds, a quantity much larger than we obsé&fve.

On the other hand, the coefficient for the varialilscutis large when compared to
estimates of the effect of the difficulty of the problem induced by the proximity of the
guantities to be compared. Consider for instance the finding in Pinel et al., 2001. In that
study subjects had to perform a numerical comparison task: Specifically, they had to de-
cide whether a visually presented number was larger or smaller than a fixed reference
number, 65. Theaumerical distance effeéf namely the effect of the distance from 65 of
the number presented to subjects on their response time, was estimated. The average re-
sponse time was 600 msc for far numbers, slightly larger for moderately distant numbers,
and 700 msc for the close numbéfs.

4. Imaging resultsand analysis
4.1. Technical premise

We present the basic concepts necessary to understand the brainimages. A more detailed
explanation of the PET technique and of the statistical analysis underlying the study is
given in Appendix A.

15 For example, in the exact addition treatment the subjects had to add a first addend, which was ranging from
22 to 86, to a second addend ranging from 18 to 86 with the sum ranging from 40 to 172.

16 No specific details are given in the study, but it seems that subjects had no time constraint.

17 This effect is defined and discussed in detail in Dehaene et al. (1998). A second effactyther size effect

was also documented in (Dehaene et al., 1998): For equal numerical distance, the discrimination of two numbers
worsens as their numerical size increases.

18 Numbers close to 65 were in the intervals 60-64 and 66—69; numbers moderately distant 50-59 and 70-79;
numbers far 30—49 and 80—-99. These times are much shorter than we observed: but the task of these subjects was
a simple comparison of two numbers.
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A point in the brain is defined by a triple of coordinatesy, z), with x the coordinate
in the right to left directiony the coordinate in the front to back direction, anth the
top to bottom direction. A positive value denotes a position on the right, a positivie
the anterior part, and a positizea position in the top part of the brain. The origin of this
system of coordinates is roughly in the middle of the brain. Together, the triphe z)
defines a point in a standardized three-dimensional model of the brain. The very small
volume of brain around each such point is callaczel

Our observations ar&y vectors of rCBF (regional Cerebral Blood flow, Appendix A),
one for each volume described by the three coordinates, z) in the brain of each of
the N subjects. As different subjects have brains of different shape and size one of the
first steps in data reduction to map the observations for the different subjects into a single
standardized brain.

A statistical test is then used to estimate the probability that the different levels of rCBF
in two conditions (for instance, in the PAC and the AC condition) at a specific point la-
beled by a triple(x, v, z) is different from zero. It is possible that two different conditions
have a rCBF significantly different from the ECR condition, but also that the levels are so
similar that the difference is not significant. THescore is the statistic we use to report the
probability that the difference is different from zero. The test is based on the assumption
of normality and independence of the error, even in voxels that are very close.

There is aZ score for each voxel (and for each pair of conditions). The data can be
more easily interpreted if a map of the difference score is presented in a gitture.

The images in the figures present thecore for each voxel, associating different colors
to different scores. First, only the voxels where the value ofZhg&core is above 2 are
shown in color. A green color denotes a value between 2 and 3, yellow between 3 and 4,
red between 4 and 5. All regions with value above 5 are white in color. In the images, the
top part of each section corresponds to the front (rostral) part of the brain, the left part to
theright part of the brain.

The values of the three coordinates are given here in millimeters (mm). The images
show horizontal (also called transversal) sections of the standard brain, withsberes
overlaid in color. The sections begin with the top and descend to the bottom. The numbers
report the value of the section, in millimeters. The standard model of the brain is that
reported in the Talairach and Tournoux (1988) atlas.

4.2. The evidence from brain images

4.2.1. Overview

The activation is mostly in cortical areas, particularly frontal and parietal. There is no
significant activation of areas (like the medial orbito frontal—or in general orbito frontal—
and the limbic system, in particular the amygdala) that have been associated with the effect
of emotions on decision making. The significance of this finding is discussed in detail in
Section 5.3.1. The images support the idea that the procedure selecting the choice is mostly

19 Colors are essential for the interpretation of the images, so a color printer is necessary. A copy of the images
can be downloaded at http://www.econ.umn.edu/~arust/neuroecon.html.
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of a cognitive nature, possibly involving some approximate computation (this hypothesis
is discussed in detail in Section 5.2.2).

The R and C conditions are qualitatively different: the R conditions have modest acti-
vation compared to the C conditions. This finding supports the conjecture that the process
involved in the choice in R conditions is simpler than the one in the C condition. These
issues are discussed in detail in Section 4.2.2.

Among the C conditions, AC and RC differ from PAC. The first two have activations
concentrated in parietal areas. The PAC condition has activations of the parietal and frontal
areas. So the PAC condition plays a special role. In fact, the subtraction PAC-RC seems
a weaker version of PAC-AC. This is particularly surprising in view of two facts. First,
considered as a decision problem the difference between the AC condition and the PAC
condition seems very small. The decision maker is told that the number of balls of each
type can be anywhere in the intenj#, 180], while in the second it can be anywhere
in the interval[10, 170], an apparently minor difference. Second, two sets of behavioral
data suggest a similarity between PAC and AC as compared to RC. The cutoff point
is in all subjects very close in the first two conditions, and rather different in the last.
Also, the response times in the PAC and AC are similar, and different from the RC condi-
tion.

4.2.2. C conditions versus R conditions

As we observed above, the most active contrasts are in the C conditions. This is par-
ticularly true if one considers the difference between the various treatments and the ECR
condition2° Among the C conditions, the most active is PAC. Similarly, among the R con-
ditions the most active is PAR.

A large active region common to many of the differences between the C condition and
the ECR is in the occipital lobe, lingual gyrus, with a peak arodnd-75, 3). This region
is for example active in PAC—ECR and RC-ECR. Interestingly, it is considerably less active
in AC-ECR. This is the primary visual cortex (V1). The activity is due to increased visual
attention. The higher activity in the C conditions is indirect evidence that this task induces a
relatively greater amount of visual scanning of the main lottery for the purpose of defining
the cutoff that is subsequently compared to the constant reference lottery.

4.2.3. The PAC condition
The two differences PAC-AC and PAC-RC have similar patterns. The main areas of
activation in the two differences PAC-AC are:

(1) aregion in the right frontal lobe, middle frontal gyrus, with peakd& 50, —2), with
a Z score 459;

(2) a region in the parietal lobe: in the subgyrus, with two peaks: orfigst-55, 42),
with a Z score 442, and the other aB34, —55, 33), with a Z score 411; also in the
parietal lobe, precuneus, with peak(dt—37, 42), with a Z score 339;

20 see Gusnard and Raichle (2001) for a recent illuminating discussion on the role and interpretation of the
“baseline” conditions in brain imaging.
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(3) aregion in the occipital lobe, lingual gyrus, with peakatl5, —91, —14), with a Z
score 41;

(4) aregion in the left frontal lobe, superior frontal gyrus, with peak-at5, —13, 63),
with a Z score 41.

The frontal and occipital activations have a weaker mirror image in the opposite hemi-
sphere.

The region of activation in the difference PAC—RC are similar to the ones above. More
specifically, the most active areas are:

(1) aregion in the frontal lobe, lower than that observed in PAC—AC, with a peak at coor-
dinates(46, 39, —9), with a Z score 446;

(2) aregion in the occipital lobe with a peak(at10, —91, —14), with a Z score 437;

(3) a region in the parietal lobe, precuneus, with a peakl&t—42, 50), with a Z
score 411.

In contrast, it is clear from the tables for the AC-RC and RC—-AC that there is little
differential activation in these two cases.

In summary, the PAC condition provides qualitatively different activation than the AC
and RC conditions. This finding stands in surprising contrast with the reasonable idea that
a partially ambiguous lottery is an intermediate state between a totally ambiguous and a
risky lottery. But it is consistent with the idea that the PAC condition is a less familiar
experience for our subjects.

4.2.4. Frontal areas

There seems to be no strong activation of the higher frontal regions. More precisely,
there is no difference displaying a strong and significant level of frontal activation in the
levels above; = 11 mm. With one exception that we discuss later, this is also true in the
differences PAC-AC and PAC-RC. In the first case, the frontal activation we have already
reported is in the; interval betweernt-11 and—11 mm. The same area is found in the
difference RC—AC, but not in the PAC-RC difference.

The mentioned partial exception in the PAC—AC treatment is the region in the superior
frontal gyrus of the left frontal lobe reported earlier (peak-al5, —13, 63)). A similar
activation is in the PAC—RC difference. In this case the peak {s-42, —8, 61), in the
medial frontal gyrus of the left frontal lobe. Thecoordinate is—4.7 mm, the highest in
the PAC-RC difference.

It is worth observing that the pre-frontal cortex (PF&joes appear prominently among
the regions that are activated. The PFC is associated with planning, namely the ability to
organize cognitive behavior in time and space.

21 This is the pole of the frontal lobe. It corresponds to the Brodmann areas 9, 10, 11.

22 This is by now a classic finding. It has first been suggested by lesion studies (see for example the early studies
of Shallice, 1988). These early results have been confirmed by brain-imaging studies. See, e.g., Zalla et al. (2000),
Koechlin et al. (1999, 2000). However, the literature on this is very large: a useful review is Cabeza and Nyberg
(2000). Owen (1997) offers a detailed review of definition and properties of planning ability in human subjects.
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4.2.5. Orbito frontal ventromedial areas

There seems to be no strong activation of the ventromedial sections of the frontal
lobes. That is, of areas known to mediate the processing of somatic and emotional re-
actions. A partial exception is an area that appears the RR—PAR difference; the peak is at
(6, 19, —18), right cerebrum, frontal lobe, medial frontal gyrus. The scorg is —3.47,
p < 0.00027. This is the only significant exception: the relative activations in AC-AR at
(1,32, —22) and in RC-RR at—1, 8, —18) are likely to be artifacts, since they are at the
extreme outer boundary of the brain.

5. Conclusions

We conclude by first summarizing the findings of greatest significance (in Section 5.1),
and then by providing these findings with a provisional interpretation (in Section 5.2).

5.1. Summary of findings

(1) In their choices, subjects behave as predicted by models of risk and ambiguity aver-
sion; their ambiguity aversion is consistent across the PAC and AC conditions.

(2) The time to decide is shorter in the C conditions. Among those, the minimum is at-
tained in the PAC and AC conditions.

(3) Learning seems to occur in the PAC condition, less so in the other C conditions, and is
almost absent in the R conditions.

(4) Inthe PAC condition, a larger distance from the cutoff point of the certain value makes
the decision faster.

(5) The regions with most intense activation are observed in the C conditions, particularly
in the difference between PAC and AC.

(6) There is low activation of ventromedial regions.

(7) There is low activation of the high frontal and pre-frontal regions.

(8) The only important frontal activation is in the PAC condition.

(9) There is high activation in the parietal regions in the C conditions.

5.2. Interpretations

5.2.1. A possible choice procedure

The results we have reported strongly suggest that a computational model of decision
making might give a more accurate model of the behavior of decision m&kers.

Here is procedure which gives an account of the observed behavior of subjects in the
C condition. In all three cases (whether the main lottery is R, or PA, or A), the subjects are
comparing the certain value with some estimate of the value of the main lottery. When this
lottery is R the estimate is in substance a sum of the two outcomes, perhaps followed by
a simple division. In the A case, the subject considers the best and worst possible scenarios.

23 A similar idea is developed in Dickhaut et al. (2003).
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In the best scenario, all balls are of the “good” color (the one that gives the largest payoff),
and in the worst scenario they are all of the “bad” color. In both cases, the corresponding
lottery is degenerate, yielding with certainty the prize associated with the only type of
ball existing in the urn. So it is easy to evaluate. The situation is more difficult in the PA
condition. In this case, the same process of reduction to the best and worst case yields
two non-degenerate (true) lotteries: one yielding the high prize with probab/litg, the

other with probability 1718. The subjects then use some rule that takes into account this
best and worst case evaluations to estimate the main I8ft&tgtice that according to this
procedure, the PA condition is the hardest of the C conditions, and it is not intermediate
between the other two, as it may appear from other perspeéfives.

We note that in our experiment the choices are similar to those predicted by economic
theory. This is not necessarily going to happen in general. We expect that as decisions
become more complex, the constraints on the procedure delivering choices will become
increasingly important, and affect in a systematic way the decision itself.

The procedure we have outlined may not be consciously followed by the subjects. There
is however a substantial difference in the response time in our experiment (always less than
three seconds) and that observed in simple computational problems (for example in the
cited studies by Dehaene and co-authors). This difference suggests that the procedure in our
study does not involve explicit calculations and may be partially automatic. We consider
this issue important because automatic processes need not be mediated by consciousness.
As a consequence, they are likely to produce relatively inflexible behavior that differs from
the repertoire produced by conscious or planned thought. Clearly, more research is needed
in this arena.

5.2.2. Approximate and exact estimates

The evidence we have presented suggests that subjects develop their decision process
trying to provide some quantitative estimate of the lotteries, but that these estimates are
approximate rather than exact. This conclusion is suggested first by the short response
time, particularly short in the harder tasks, and it is supported by the observation that the
computational aspects of the estimates used in the decision are located in the parietal, rather
than frontal lobe.

This statement is significant and informative only inasmuch there is a qualitative differ-
ence between exact and approximate processes. For example, a difference in the cerebral
networks activated by the two types of processing. This is precisely the conclusion reached
by a set of recent studies by Dehaene and different co-authors (see Dehaene et al., 1996,
1999; also see Pugh et al., 1996 and Jonides et al., 1999). These studies argue for the exis-

24 an example of one such rule is the so-calledMEU” rule, according to which an action is ranked via

a convex combination of the best and worst case evaluatons the weight given to the “min” component,

a measure of the subject’'s ambiguity aversion; see Ghirardato et al. (2002) for details and an axiomatic treatment
of this rule).

25 Forinstance, in terms of the amount of information available to the decision maker. There is only one possible
composition of the urn in the risky lottery; in the partially ambiguous one, there is a set of possible compositions,
and in the ambiguous one there is an even larger set. Or consider the point of view of a decision maker who is
evaluating lotteries according to the MEU model. The worst case in the risky lottery is better than it is in the
partially ambiguous one, and this is in turn better than it is in the ambiguous one.
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tence of a specialization for processagproximatexumerical quantities that is common to
humans and animals, particularly mamn?#$n addition, exact and approximate process-
ing are associated with activity in different cerebral locations. For example in (Dehaene
etal., 1999, p. 971) the authors note that

“[...] the bilateral parietal lobe showed greater activationdpproximation than for
exact calculation. The active areas occupied the banks of the left and right intra parietal
sulci, extending anteriorly to the depth of the post central sulcus and laterally into the
inferior parietal lobule [. . .] Activation was alsodind during approximation in the right
precuneus, left and right pre central sulci.]”

These two regions also relate differently to language centers. In behavioral and brain-
imaging studies exact calculations are shown to be language dependent, while approxi-
mations rely on a visuo-spatial cerebral netwéfk.

As we have seen, the PAC condition has a comparatively strong activation of the frontal
lobe, which extends over a large part of the middle frontal gyrus. This is one of the find-
ings that sets the PAC condition apart from the others, including the AC and RC conditions.
There are two possible interpretations of this difference. The first is that some exact calcu-
lation is taking place when subjects are considering a partially ambiguous lottery. This
is partially in agreement with the finding of Dehaene et al. (1999), but is not entirely
convincing in view of the short response time in this condition. A second interpretation
appears more convincing on the basis of the evidence we have presented so far: more gen-
eral higher cognitive functions become involved over the course of the trial, as subjects
try to arrive at a satisfactory method to evaluate the PA lottery. Again, further research is
necessary here.

26 For instance, in (Dehaene et al., 1999) the authors state that

“Within the domain of elementary arithmetic, current cognitive models postulate at least two representational
formats for number: a language-based format is used to store tables of exact arithmetic, and a language-
independent representation of number magnitude, akin to a mental ‘number line.’”

See, e.g., Dehaene (1992) for a review of these findings.
27 See Dehaene et al. (1999) and Spelke and Tsivkin (2001). In the Spelke and Tsivkin's (2001) study, subjects
were familiar with the two languages (Russian and English). They were trained to execute mathematical tasks
either approximately or exactly. The performance after training improved, so training was effective. However,
the crucial test was the performance on new tests. When tested on the problems to be solved exactly, the perfor-
mance was significantly better when the test was administered in the same language in which it had been taught,
independently of whether it was English or Russian. On the contrary, the performance on approximate tests was
independent of the language. In the authors’ words:

“[...] a specific, natural laguage contributes to the representation of large, exact numbers but not to the
approximate number representation that humans share with other mammals. Language appears to play a role
in learning about exact numbers in a variety of contexts]{
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5.2.3. The response times

Let us recall the two facts that stand out. First, response times are longer in the R than
in the C conditions. Second, among the C conditions, response time is shortest in the PAC
condition. At first blush, these facts seem to directly contradict our procedural explana-
tion’s claim that the choices in the C conditions are harder, and that among them the PAC
condition is the hardest. If this is the case, then why do the subjects not take more time in
examining the more complex choices, and seem to do the opposite?

Consider this argument more carefully. It is based on two implicit assumptions: (1) that
the allocation of attentional effort is in some way optimal, and (2) that subjects make at the
beginning of the choice process a single decision on the amount of effort to be devoted to
decision making.

The first assumption is reasonable, but its implications are richer than just that longer
time will be used for harder problems as long as attentional effort is not costless. If it is
costly, then the cost of such effort—which may be different in different conditions—uwiill
be compared to its effectiveness. The data on activation seem to indicate that the effort
in the C conditions is more intense, hence perhaps more unpleasant. (Moreover, it is also
possible that this effort is less effective that it is in the R condition.)

On the other hand, the second assumption is clearly false: Subjects monitor their own
decision process, and they likely get a feedback on the effectiveness of their thinking
process. This is a common assumption in models of attention (see, e.g., Bundesen, 1990,
where attention produces a sharpening of the information, until the subject decides that it
is optimal to decide).

Summarizing these considerations, it seems to us that in a realistic model of optimal
allocation of attention, the time actually devoted to choice in hard conditions might actu-
ally be shorter, rather than longer. Thus, we do not think that the data on response times
are necessarily at odds with the choice procedure suggested above. Moreover, it is worth
remarking that the additional time in the R conditions & visthe C conditions might be
also explained by the fact that in the C conditions only one of the two lotteries (the non-
degenerate one) needs to be evaluated.

5.3. Decisions and emotions

5.3.1. The Somatic Marker hypothesis

The interpretation we have provided views the process of choice essentially as a cogni-
tive process. This view contrasts with an interpretation suggested in the last decade—and
based largely on neuro psychological and clinical observations—that “decision making is
a process guided by emotions” (see, e.g., Bechara and Damasio, 2003).

This latter interpretation is centered around the Somatic Marker hypothesis (SMH;
Damasio, 1994; Damasio et al., 1991). The initial insight for this hypothesis is provided
by William James’ theory of emotions. Let us first distinguish betwemotionas the set
of somatic reactions induced by an outside event (like the appearance of a snalesl-and
ing as the subjective perception of the events (both external to the subject and internal to
the subject, as somatic reactions). In James’ theory, the feeling is induced by the somatic
reaction to outside events: in his beautiful expression, we are sad because we cry, we do
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not cry because we are s&iThe SMH extends this idea to decision making. According

to the hypothesis, “an emotional (that is, somatic) mechanism rapidly signals the prospec-
tive consequences of an action, and accordingly assists in the selection of an advantageous
response option” (Bechara and Damasio, 2003).

The centers in the brain where such response is located are the orbito-frontal cortex and
the amygdala. As we have seen, neither of these two centers is activated in our subjects.
These two regions are routinely observed in studies conducted with the same scanner and
techniques, so the failure to observe is almost certainly due to a lack of acti&tion.

The SMH has been tested in a standard laboratory experimental setup, in particular in
the Card Deck Test (Bechara et al., 2000). In this test, subjects choose one deck of cards
out of a set of four for a number of periods (usually one hundred). After they choose a
deck they pick the top card, and a monetary amount associated to each card, which can be
positive (gain) or negative (loss), is revealed. Normal subjects tend to choose, after an initial
number of periods, decks that have positive expected return, even if the positive amounts
are smaller. Patients with lesions in the orbito frontal region or in the amygdala tend to
choose, even in later periods, deck that have larger positive amounts but compensated by
even larger negative returns, so that the expected return for the deck is negative (Bechara
and Damasio, 2003, Fig. 4). These results support the hypothesis that the orbito frontal
cortex and amygdala are involved in decision processes, and they have been confirmed by
imaging studies (see, e.g., O’'Doherty et al., 2001).

There are several differences between the two experimental setups that can explain this
difference. First of all, our subjects do not receive any information on the consequences
of their choices during the experiment (no feedback), so they do not experience gain or
losses. Second, our subjects do not learn anything about the distribution of the outcomes
in addition to what they know at the beginning of the experiment. That is, we study specif-
ically choice, rather than learning and choice. In contrast in the Card Deck Test subjects
experience incremental learning: they are informed of the outcome in each period, and can
use this information in the following choices. Finally, our subjects have only gains, while
subjects in the Card Deck test have gains and losses. It is interesting to note that in a study
(Dickhaut et al., 2003) with a structure similar to the present study, but involving losses,
an orbito frontal activation appears in the comparison between gain and losses.

28 More precisely:

“[-..1the more rational statement is that we feel soreg@use we cry, angry because we strike, afraid because
we tremble, and not that we cry, strike, or tremble, because we are sorry, angry, or fearful, as the case may
be” (James, 1884).

29 For example an orbito frontal activation appears clearly in the study (Dickhaut et al., 2003), conducted with
the same devices and techniques. In the images of the present study, a clear example of a ventromedial orbito
frontal activation can be found in any of the subtractions from ECR of any of the conditions. A patrticularly clear
instance is for example in the ECR-AR subtraction, between the vertical coordinates1 t(see the set of

images ECR in http://www.econ.umn.edu/~arust/neuroecon.html). A comparative activation of this region in the
ECR condition is a standard—although not yet well understood—finding.
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5.3.2. Reward anticipation and outcomes

Very similar differences appear between the setup of our study and recent studies focus-
ing on the neuro anatomical and neuro chemical mechanisms underlying the evaluation of
rewards, and in particular on the separation between expectancy and experience of reward
and loss (see Breiter et al., 2001, but also Breiter et al., 1997), or reward anticipation and
the reward outcome (see Knutson et al., 2001).

In these studies, the experimental sessions consist of a sequence of trials, where sub-
ject observe a cue that may signal the delivery of a reward or the lack of reward (or of a
loss). Immediately after the arrival of the cue and possibly of their response, subjects know
whether a reward is given in that trial. Different regions are activated in the different cases
(with Nucleus Accumbens, Ventromedial Frontal Cortex and Orbito Frontal Cortex the
main regions in the various cases). These studies provide the foundation for a mechanistic
explanation of the processes that go from delivery of reward or lack thereof, to subject’s
evaluation of the outcome. However, they are not a study of the process leading to choice.

Further studies, with a careful analysis of brain activation, are needed to test the hypoth-
esis that choice separated from immediate reward requires different brain processes, and to
understand how emotions enter the decision process. It seems, though, that the black box
of the decision process is slowly beginning to yield.
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Appendix A. Regression tables

Table A.1

Regression on response times for the C conditions

Variable Coeff. Std. error t P>t 95% conf. interval
Response time for AC on discut and order

Discut —34.68 777 —4.46 0.000 [—50.03 —19.32]

Order -391 1268 -0.31 0.758 [—28.95,21.12]

Constant 24187 16570 1455 0.000 [208453,273881]
Response time for PAC on discut and order

Discut —56.71 844 —6.71 0.000 [—73.39, —40.03]

Order —20.99 1346 —1.56 0.121 [—47.58,5.59]

Constant 310@5 17211 1805 0.000 [2790Q70, 34174]
Response time for RC on discut and order

Discut —5361 1261 —4.25 0.000 [—7853, —28.69]

Order —29.35 1628 —1.80 0.074 [—6153,2.82]

Constant 32865 18870 1742 0.000 [291389, 365962]
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Table A.2

Regression on response times for the R conditions

Variable Coeff. Std. error t P>t 95% conf. interval
Response time for AR on value, order and variance

Value 424 1204 035 0.725 [—19.58,28.07]

Order -1101 2051 -0.54 0.592 [—51.60, 29.58]

Variance 2196 10828 202 0.045 [5.005,43351]

Constant 24702 89028 278 0.006 [70915, 423229]
Response time for PAR on value, order and variance

Value 2198 1289 1700 0.091 [—3.53,47.49]

Order —-1.21 2202 —0.06 0.956 [—44.78,42.36]

Variance 31123 11717 266 0.009 [79.42,54304]

Constant 133%2 91755 1457 0.147 [—48152,314877]
Response time for RR on value, order and variance

Value 1246 1322 094 0.348 [—13.69,3862]

Order —-8.48 2270 -0.37 0.709 [—53.41, 36.44]

Variance 2510 12021 209 0.039 [13.26,48894]

Constant 191%4 96855 198 0.050 [—0.667, 383195]

Appendix B. Thelotteries

All lotteries were built on the basis of an urn containing 180 balls, that could be either
red or blue. The different lotteries were described by different proportions of red and blue
balls in the urn, different information and different value associated with each ball. In all
treatments, the color of the ball with the high value outcome changed over the different
choices in that treatment.

B.1. Reference lotteries

The certain lottery C was a degenerate lottery: a single value would appear on the screen,
ranging from a minimum of 10 to a maximum of 8.

In the risky lottery R the urn had 90 blue and 90 red balls; the outcomes had expected
values ranging from 30 to 4%. For each of the different expected values, we had three
different lotteries, with different variance. For instance for the expected value 40 we had
(80, 0), (58, 12) and (48, 32) as possible outcomes.

B.2. Main lotteries

In the R lottery, the urn had 90 blue and 90 red balls, and the monetary payoffs were
fixed to be(60, 10).

In the partially ambiguous lotteries (PA), the urn contained at least 10 balls of each
color, while the others could be of either color. In the ambiguous lotteriesa{/Athe balls
could be of either color.

30 precisely: 10, 15, 20, 25, 28, 30, 31, 32, 33, 34, 35, 36, 38, 40, 42, 45, 50.
31 precisely: 30, 32, 35, 38, 40.
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In the PAC condition, the payoffs were fixed to (&9, 10); only the attribution to one
or the other color was changed across lotteries. The same véhted)) were used for
the A lotteries in the AC condition. In the PAR and AR conditions, the PA and A lotteries
had a simple outcome structure: five different pairs of outcomes. One was always equal to
zero, the other ranged from 60 to 8.

In the implementation of the lottery in the final stage of the experiment (when the
payment to the subjects was decided), the actual composition of the urns used for the
ambiguous and partially ambiguous lotteries were drawn from a uniform distribution over
the number of blue balls.

Appendix C. PET

PET measures the amountrefjional Cerebral Blood FlowrCBF) to specific regions
of the brain. The procedure begins with the slow injection of a lightly radioactive liquid
into an arm vein. The scanning begins almost immediately after the injection.

C.1. What PET detects

In a PET study, a subject is administered by injection a radioisotope emitting positrons
(positively charged electrons). The isotope then circulates through the bloodstream to
reach, among others, the brain tissue. Positrons are positively charged electrons, emitted
from the nucleus of radioisotopes that are unstable because they have an excessive number
of protons and a positive charge. When a positron comes in contact with an electron, the
two particles annihilate turning the mass of the two particles into two gamma rays that are
emitted at 180-degree to each other. These gamma rays easily escape from the human body
and can be recorded by external detectors. The tomography detects these coincident rays,
which indicates that positron annihilation has occurred somewhere along that coincidence
line. The scanner then reports the amount of radiation from all different positions in the
brain on average over the period in which the scan is taken. When the gamma rays interact
with scintillation crystals, they are converted into light photons in the crystals. The scin-
tillation events can be compared among all opposing detectors along many coincidence
lines.

The procedure is reliable, accurate, and gives a complete picture of the brain, with a
uniform precision for deep and superficial structures. However, it is necessary to take av-
erages of rCBF over a relatively long period (on the time scale of the experiment) and the
technique is therefore not suitable to detect changes that take place in short time intervals.
(See, e.g., Phelps, 1992 for details.)

C.2. Method in our study

In our study, PET was used together with a tracer (H2150) to estimate rCBF, a stan-
dard indicator for brain activity. The rCBF was estimated from tissue radioactivity (after

32 precisely: 60, 64, 70, 76, 80.
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correction with measured two-dimensional attenuation) using a Siemens ECAT 953B
scanner (Knoxville, TN USA) with septae retracted; i.e., three-dimensional acquisition.
An arm vein was used for access. The participant’'s head position was stabilized with
a vacuum-molded pillow. A slow-bolus of H2150 was injected intravenously (9.25 MBA
or 0.25 mCyKGB initially, infused at a constant speed over 30 s). Data acquisition (cor-
recting for random decay and electronic dead time only) commenced upon arrival of
activity into the head as evidenced by consistently rising true counts. Each experimen-
tal scan of 90 seconds contained data from one type of lottery, e.g., CGS or RG. The
interval between scans was about 10 minutes. Images were reconstructed by filtered back
projection including non-orthogonal angles to a final image resolution of 10 mm full-width
at half-maximum.

C.3. Statistical analysis

An exposition of the conceptual and statistical foundations of the analysis is given in
Frackowiak et al. (1997). For each individual and each treatment, we have a four dimen-
sional vector(x, y, z, FCBF) recording the rCBF at the location described by they, z)
coordinates.

C.3.1. Normalization

The data are for each individual subject, with brains of possibly different size and shape.
The data are normalized onto a standard brain, so that a point in the standard brain corre-
sponds to the same point in different brains.

We then analyze each pair of treatments separately, subtracting at each voxel the rCBF
of the two activations, and then subtracting from this number, one for each subject, the
average over subjects. A two-sided test gives the probability that the difference is larger
than zero under the null hypothesis that the treatment is not influential.
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