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I. Introduction

It is well known that mechanisms used to finance public goods may yield
disappointing revenues because they suffer from a free-rider problem.
For example, simply asking for voluntary contributions generally results
in underprovision of the public good (e.g., Bergstrom, Blume, and Var-
ian 1986). From a theoretical viewpoint, Groves and Ledyard (1977)
solved the decentralized public-goods provision problem by identifying
an optimal tax mechanism that overcomes the free-rider problem. This
theoretical mechanism contrasts with practical ways to raise money for
a public good such as lotteries and auctions. Even the voluntary con-
tribution method is commonly observed in practice, despite its inferior
theoretical properties. The coexistence of these alternative formats
raises the obvious question: Which method is superior at raising money?

Morgan’s (2000) work constitutes an important first step in answering
this question. He studies the fund-raising properties of lotteries and
makes the point that the public-good free-rider problem is mitigated
by the negative externality present in lotteries. This negative externality
occurs because an increase in the number of lottery tickets that one
person buys lowers others’ chances. As a result, lotteries have a net
positive effect on the amount of money raised vis-à-vis voluntary con-
tributions. A similar negative externality emerges in auctions, where a
bidder’s probability of winning is negatively affected by more aggressive
bidding behavior of others.

A priori, most economists would probably expect that auctions are
superior to lotteries in terms of raising money. Unlike lotteries, auctions
are efficient; in equilibrium, the bidder with the highest value for the
object places the highest bid and wins. This efficiency property promotes
aggressive bidding and boosts revenue, suggesting that lotteries are sub-
optimal. However, fund-raisers that use lotteries, or “raffles,” are quite
prevalent, which casts doubt on the empirical validity of this conclusion.

The flaw in the above argument stems from a separate problem that
emerges in auctions in which only the winner pays. When a bidder tops
the highest bid of others, she wins the object but concurrently eliminates
the benefit she would have derived from free-riding off that (previously
highest) bid. The possible elimination of positive externalities associated
with others’ high bids exerts downward pressure on equilibrium bids
in winner-pay auctions. Notice that this feature does not occur in lot-
teries in which all nonwinning tickets are paid.

In this paper we determine the extent to which bids are suppressed
in winner-pay auctions and find that these formats yield dramatically
low revenues. Even when bidders value $1.00 given to the public good
the same as $1.00 for themselves, revenues are finite. In contrast, lot-
teries generate arbitrarily large revenue in this case, notwithstanding



how (not) to raise money 899

their inefficiency. Though extreme, this example suggests that it may
make sense to use lotteries instead of winner-pay auctions to raise money.

The main virtue of lotteries in the above example, that is, that all
tickets are paid, can be incorporated into an efficient mechanism. “All-
pay” auctions, where everyone pays irrespective of whether they win or
lose, avoid the problems inherent in winner-pay auctions. Since they
are also efficient, they are prime candidates for superior fund-raising
mechanisms. In this paper, we prove this intuition correct. We introduce
a general class of all-pay auctions, rank their revenues, and illustrate
the extent to which they dominate winner-pay auctions and lotteries.
Furthermore, we show that the optimal fund-raising mechanism is
among the all-pay formats we consider.

Adding an all-pay element to fund-raisers seems very natural. Indeed,
the popularity of lotteries as means to finance public goods indicates
that people are willing to accept the obligation to pay even though they
may lose. Presumably, the costs of losing the lottery are softened because
they benefit a good cause. In some cases, it may even be awkward to
not collect all bids. Suppose, for instance, that a group of parents submit
sealed bids for a set of prizes that are auctioned, knowing that the
proceeds benefit their children’s school. Some parents may be offended
when told they contributed nothing because they lost the auction or,
in other words, because their contributions were not high enough.

This paper is organized as follows. In Section II, we consider winner-
pay auctions in which bidders derive utility from the revenue they gen-
erate. We build on the work of Engelbrecht-Wiggans (1994), who studies
such auctions for the two-bidder case. We extend his finding that second-
price auctions revenue-dominate first-price auctions by showing that
both auctions may be dominated by a third-price auction. The main
point of Section II, however, is punctuated by a novel revenue equiva-
lence result for the case in which people are indifferent between a dollar
donated and a dollar kept. We show that the amount of money generated
in this case is identical for all winner-pay formats and surprisingly low.

In Section III we introduce a general class of all-pay auctions. We
show how these formats avoid the shortcomings of winner-pay auctions
and we rank their revenues.1 We demonstrate that an increase in the
number of bidders may decrease revenues as low bids more and more
resemble voluntary contributions. Fund-raisers can therefore benefit
from limiting the number of contestants. In Section IV we derive the

1 A related paper is that of Krishna and Morgan (1997), who study first-price and second-
price all-pay auctions. They show that when bidders’ values are affiliated, revenue equiv-
alence does not hold. Baye, Kovenock, and de Vries (1998, 2000) also study these all-pay
formats with affiliated values and consider their applications in a wide variety of two-person
contests, including patent races, lobbying, and litigation.
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optimal fund-raising mechanism, which involves both an entry fee and
a reserve price.

Our work is related to several papers that consider auctions in which
losing bidders gain by driving up the winner’s price. In takeover situ-
ations, for example, losing bidders who own some of the target’s shares
(“toeholds”) receive payoffs proportional to the sales price (e.g., Singh
1998; Bulow, Huang, and Klemperer 1999). A related topic is the dis-
solution of a partnership, as analyzed by Cramton, Gibbons, and Klem-
perer (1987). Graham and Marshall (1987) and McAfee and McMillan
(1992) study “knockout auctions,” where every member of a bidding
ring receives a payment proportional to the winning bid. Other ex-
amples include creditors bidding in bankruptcy auctions (Burkart 1995)
and heirs bidding for a family estate (Engelbrecht-Wiggans 1994). These
papers restrict attention to standard winner-pay auctions, that is, first-
price, second-price, and English auctions. Another important difference
is our assumption of a public-good setting: one bidder’s benefit from
the auction’s revenue does not diminish its value to others.

The paper most closely related to ours is the one by Engers and
McManus (2003), who consider “charity auctions.”2 They consider first-
price and second-price auctions and extend Engelbrecht-Wiggans’s
(1994) ranking to the n-bidder case. Our results, however, demonstrate
that (i) there exist other winner-pay formats that revenue-dominate the
second-price auction, and (ii) all winner-pay formats are poor fund-
raisers. Engers and McManus find that a first-price all-pay auction yields
a higher revenue than a first-price auction, but that its revenue may be
more or less than that of a second-price auction. Our paper provides a
framework to explain these results and gives a more general ranking of
all-pay revenues. In addition, we prove that the lowest-price all-pay auc-
tion augmented with an entry fee and reserve price is the optimal fund-
raising mechanism.

Finally, our work is related to that of Jehiel, Moldovanu, and Stacchetti
(1996), who consider auctions in which the winning bidder imposes an
individual-specific negative externality on the losers. One important dif-
ference is that the magnitudes of the externalities that occur in fund-
raisers are endogenously determined, whereas those considered by Je-
hiel et al. are fixed.

II. Winner-Pay Auctions

In this section we consider “standard” auctions in which only the winner
has to pay. We start with a simple three-bidder example to illustrate and

2 See Ledyard (1978) for an early evaluation of the use of auctions to raise money for
a public good.
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extend previous results in the literature and, more important, to dem-
onstrate that winner-pay auctions are poor at raising money. We un-
derscore our point by proving a novel revenue equivalence result: when
bidders value $1.00 given to the public good the same as $1.00 for
themselves, the revenue generated is identical for all winner-pay auc-
tions. Most important, however, revenue in this case is only the expected
value of the highest order statistic.

Consider three bidders who compete for a single indivisible object.
Suppose that bidders’ values are independently and uniformly distrib-
uted on [0, 1] and the auction’s proceeds accrue to a public good that
benefits the bidders. We assume a particularly simple linear “production
technology” in which every bidder receives $a from $1.00 spent on the
public good. Hence, bidders in the auction receive aR in addition to
their usual payoffs, where R is the auction’s revenue. Engelbrecht-
Wiggans (1994) first studied auctions in which bidders benefit from the
auction’s revenue. He derived the optimal bids for the first-price and
second-price auctions when there are two bidders. His answers, however,
can easily be extrapolated to our three-bidder example. In the first-price
auction, equilibrium bids are3

2v
B (v) p , (1)1,3 3 � a

where the first subscript indicates the auction format and the second
the number of bidders. Similarly, equilibrium bids in the second-price
auction are

v � a
B (v) p . (2)2,3 1 � a

Since the bidding functions are linear, revenues follow by evaluating
(1) and (2) at the expected value of the highest and second-highest
of three draws: and . NoteR p 3/(6 � 2a) R p (1 � 2a)/(2 � 2a)1,3 2,3

that when , which is the usual revenue equiv-1R p R p a p 01,3 2,3 2
alence result, and when . For intermediate val-3R p R p a p 11,3 2,3 4
ues of a we have , a result first shown by Engelbrecht-R 1 R2,3 1,3

Wiggans for the case of two bidders.
This suggests that the second-price auction should be preferred for

fund-raising. The result is of limited interest, however, since it is easy

3 Consider a bidder with value v who bids as though he has value w and faces rivals who
bid according to . The expected payoff isB (7)1,3

1

e 2 2p (B (w)Fv) p [v � (1 � a)B (w)]w � a B (z)dz .1,3 1,3 � 1,3
w

It is easy to verify that the first-order condition for profit maximization is
, so it is optimal for a bidder with value v to bid .e� p (B (w)Fv) p 2(v � w)w B (v)w 1,3 1,3
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Fig. 1.—Revenues from a first-price (short dashes), second-price (long dashes), and
third-price (solid line) auction with three bidders for .0 ≤ a ≤ 1

to find other formats that revenue-dominate the second-price auction.
Consider, for instance, a third-price auction in which the winner has to
pay the third-highest price. Equilibrium bids for this format are given
by

2(v � a) a (1/2)[� 1�(8/a)�1]�B (v) p � [1 � 1 � (8/a)](1 � v)3,3 1 � a 2(1 � a)

(3)

with corresponding revenue

2 �1 � a � 3a [3 � 1 � (8/a)]
R p . (4)3,3 2(1 � a)(1 � 3a)

Also, the third-price auction yields revenue of one-half when asa p 0
dictated by the revenue equivalence theorem and three-fourths when

. For intermediate values of a, the third-price auction results ina p 1
higher revenues than the other two formats, as shown in figure 1.

The revenue equivalence result for holds quite generally. Con-a p 1
sider a setting with n bidders whose values are identically and indepen-
dently distributed on [0, 1] according to a distribution .4 To deriveF(7)
the amount of money raised when , we focus on the first-pricea p 1
auction, for which it is a weakly dominant strategy to bid one’s value.
To verify this claim, consider bidder 1 and let denoteb p max {b }�1 ip2,…,n i

the highest of the others’ bids. When , bidder 1’s expected payoffv ≥ b1 �1

4 Throughout this paper we assume that the corresponding probability density function
is positive and continuous.f (7)
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when she bids her value is , and she gets the same payoff for all bidsv1

with which she wins. When she bids too low and loses the auction,
however, her expected payoff becomes . In other words, bidderb ! v�1 1

1 never gains but may lose when choosing a bid different from her
value. Similarly, when , bidder 1’s expected payoff when she bidsv ! b1 �1

her value is . This payoff is the same for all bids with which she loses,b�1

but a bid that would lead her to win the auction yields a lower expected
payoff equal to . So it is optimal to bid one’s value, and the auction’sv1

revenue is simply the expected value of the highest order statistic. We
next show that other winner-pay formats yield the same revenue (see
the Appendix for a proof). Let denote the kth-highest order statisticnYk

from n value draws.
Proposition 1. The revenue of any winner-pay auction is fornE(Y )2

and for .na p 0 E(Y ) a p 11

This revenue equivalence result is somewhat interesting in its own
right, but the main point is that winner-pay auctions are ineffective at
raising money. Revenues are increasing with a (see fig. 1), so the highest
revenue should be expected for . In this extreme case bidders area p 1
indifferent between keeping $1.00 for themselves and giving it to the
public good, yet revenues are only in a winner-pay auction. WenE(Y )1

show below that bidders would spend their entire budgets if a lottery
or all-pay auction were used.

III. All-Pay Auctions

The problem with winner-pay auctions is one of opportunity costs. A
high bid by one bidder imposes a positive externality on all others, who
forgo this positive externality if they top the high bid. Bids are sup-
pressed as a result, and so are revenues. This would not occur in situ-
ations in which every bidder pays, regardless of whether they win or
lose.5 In this section, we introduce kth-price all-pay auctions in which
the highest bidder wins, the lowest bidders pay their bids, andn � k
the k highest bidders pay the kth-highest bid.

5 Morgan (2000) considers lotteries as ways to fund public goods. Lotteries have an “all-
pay” element in that losing tickets are not reimbursed. A major difference is that lotteries
are not, in general, efficient; i.e., they do not necessarily assign the object for sale to the
bidder who values it the most. Indeed, even in symmetric complete information environ-
ments in which efficiency plays no role, lotteries tend to generate lower revenues because
the highest bidder is not necessarily the winner. To see this, suppose that the prize is
worth V to all bidders. In a lottery the optimal number of tickets to buy is (n �

, resulting in a revenue of . In the first-price all-pay21)V/[n (1 � a)] (n � 1)V/[n(1 � a)]
auction, the symmetric Nash equilibrium is in mixed strategies. The equilibrium distri-
bution of bids is , and the resulting revenue is , which1/(n�1)F(b) p {b/[(1 � a)V]} V/(1 � a)
exceeds that of a lottery for all n. Note, however, that the revenue of a lottery may exceed
that of a first-price winner-pay auction, for instance, where the unique symmetric equilib-
rium entails bidding V, and hence revenue is V, for all .a ≤ 1
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To derive the bidding functions, consider the marginal benefits and
costs of raising one’s bid. There are two positive effects of increasing
one’s bid from to . First, it might lead one′B(v) B(v � e) ≈ B(v) � eB (v)
to win the auction that otherwise would have been lost. This occurs
when the highest of the others’ values falls between v and , whichv � e

happens with probability . Second, an increase inn�2(n � 1)ef(v)F(v)
one’s bid raises revenue by if there are at least higher bids′eB (v) k � 1
and by an additional if there are exactly higher bids.′e(k � 1)B (v) k � 1
Let denote the distribution function of the th order statisticn�1F (k � 1)Yk�1

from draws with the convention and . Then�1n � 1 F (v) p 0 F (v) p 1n�1Y Y0 n

probability that there are at least bidders with values higher thank � 1
v is . Similarly, the probability that there are exactly suchn�11 � F (v) k � 1Yk�1

bidders is

n�1 n�1 n�1 n�1[1 � F (v)] � [1 � F (v)] p F (v) � F (v).Y Y Y Yk�1 k k k�1

Combining the different terms, we can write the expected marginal
benefit as e times

n�2 ′
n�1 n�1 n�1(n � 1)vf(v)F(v) � aB (v){[1 � F (v)] � (k � 1)[F (v) � F (v)]}.Y Y Yk�1 k k�1

(5)

Likewise, the marginal cost is when there are at least higher′eB (v) k � 1
bids, and the expected marginal cost is therefore e times

′
n�1B (v)[1 � F (v)]. (6)Yk�1

The optimal bids can be derived by equating benefits to costs. The
resulting differential equation has a well-defined solution for .a ! 1/k
This case is studied in the next proposition, which also compares the
resulting revenues to that of a lottery ( ).LOTR

Proposition 2. When , the equilibrium bids of the kth-pricea ! 1/k
all-pay auction are

v n�2(n � 1)zf(z)F(z)APB (v) p dz, (7)k,n �
n�1 n�1(1 � ka)[1 � F (z)] � a(k � 1)[1 � F (z)]0 Y Yk�1 k

and revenues are
1

n�1z[1 � F (z)]YAP k�1
nR p dF (z). (8)k,n � Y2

n�1 n�1(1 � ka)[1 � F (z)] � a(k � 1)[1 � F (z)]0 Y Yk�1 k

Revenues of the kth-price all-pay auction are increasing in a but may
decrease with n, and for and .LOT AP APR ! R ! R 2 ≤ k ≤ n a 1 0k�1,n k,n

Thus the all-pay formats revenue-dominate the lottery, and, most im-
portant, the lowest-price all-pay auction revenue-dominates all other all-
pay formats. Not surprisingly, it also revenue-dominates all winner-pay
auctions. This latter result, which we prove in the next section, is fore-
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Fig. 2.—Revenues from a first-price (short dashes), second-price (long dashes), and
third-price (solid line) all-pay auction with three bidders for .0 ≤ a ≤ 1

shadowed by figure 2. This figure shows the revenues of a first-price,
second-price, and third-price all-pay auction in which there are three
bidders whose values are uniformly distributed. Comparing figures 1
and 2 illustrates clearly the extent to which revenues are suppressed in
winner-pay auctions.

Unlike winner-pay formats in which revenues are increasing in both
a and n,6 all-pay formats may yield lower revenues when there are more
bidders. The intuition behind this result can be made clear by consid-
ering the second-price all-pay auction. With two bidders, the loser knows
that her bid determines the price paid by the winner, which provides
the loser with an incentive to drive up the price. This is not true with
three or more bidders, however, in which case the lowest bids aren � 2
paid only by the losers. Hence there are no positive externalities asso-
ciated with such bids, which become like voluntary contributions to the
public good. This suppresses bids of low-value bidders, who free-ride
on the revenues generated by the bidders with higher values. Fund-

6 Equilibrium bids are , where , forv n n (n�1)/(1�a)B (v) p zdF (zFv) F (zFv) { [F(z)/F(v)]∫01,n a a

the first-price auction. Note that first-order stochastically dominates for all ,n n ′F F a ≥ a′a a

and first-order stochastically dominates for all . Hence an increase in a or n′n n ′F F n ≥ na a

raises bids and revenues. Equilibrium bids for the second-price auction are B (v) p2,n

, where1 zdG (zFv)∫v a

1/a

1 � F(z)
G (zFv) { 1 � ,a [ ]1 � F(v)

independent of n. The term first-order stochastically dominates for all , and′G G a ≥ a′a a

an increase in a results in higher bids and higher revenues. Bids in the second-price
auction are independent of the number of bidders, but the expected value of the second-
highest order statistic increases with n and, hence, so does revenue.
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raisers may thus benefit from limiting competition and restricting access
to “a happy few.”

When , the equilibrium bidding function in (7) breaks downa 1 1/k
and revenues diverge. This divergence is, of course, a consequence of
our assumption of a linear production technology for the public good.
If the marginal benefit of the public good is sufficiently decreasing
(instead of being constant), revenues are finite. We keep the constant
marginal benefit assumption because it provides a tractable model to
show how much worse winner-pay auctions are in terms of raising money
than all-pay formats.

To deal with the case , we assume that bidders have a finitea 1 1/k
budget M, where M is much larger than one. Recall from proposition
1 that revenues of winner-pay auctions are bounded above by one when-
ever , and they are bounded by M when since only a singlea ≤ 1 a 1 1
bidder pays. In contrast, we next show that the lowest-price all-pay auc-
tion raises the maximum amount nM when .a 1 1/n

Proposition 3. When and bidders face a budget constrainta 1 1/k
M, the equilibrium bids of the kth-price all-pay auction are7

APB (v) for v ! v*AP k,nB (v, M) p (9)k,n {M for v ≥ v*,

with given by (7). The cut point, , satisfies whenAPB (v) v* 0 ! v* ! 1k,n

and , in which case andLOT AP APk ! n 1/n ! a ! 1 R ! R ! nM R !1,n k,n

. When , and for all k.AP LOT APR p nM a ≥ 1 v* p 0 R p R p nMn,n k,n

In particular, when bidders value $1.00 for the public good the same
as $1.00 kept, revenues of a lottery or any of the all-pay auctions are
equal to the sum of the bidders’ budgets, nM. This maximum possible
revenue contrasts with the expected revenue of a winner-pay auction,

(see proposition 1). When and , bidders with suf-nE(Y ) ! 1 a ! 1 k ! n1

ficiently small values continue to bid according to (7) in the kth-price
all-pay auction because the value from possibly winning the item is too
small to justify the increased cost of a jump to M. Revenues are strictly
smaller than nM in this case unless the lowest-price auction is used for
which this maximum amount is guaranteed whenever .a 1 1/n

IV. Optimal Fund-Raising Mechanisms

In the previous section we showed that when , the lowest-pricea 1 1/n
all-pay auction raises the maximum possible revenue. Here we prove
that the lowest-price all-pay auction is the optimal fund-raising mech-
anism for and, hence, is optimal generally. Consider first thea ! 1/n
case in which the seller cannot commit to keeping the good, so that he

7 See Gavious, Moldovanu, and Sela (2002) for a similar analysis and results.
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cannot use an entry fee or a reserve price. Note that this assumption
is closely related to the assumption in the Coase conjecture that a seller
of a durable good cannot commit to selling the good for the monopoly
price (Coase 1972).

Proposition 4. When the seller cannot commit to keeping the
good, the lowest-price all-pay auction is revenue maximizing. The total
amount raised is increasing in a.

The intuition for this result is as follows. The total surplus generated
by the auction is maximized when the auction outcome is efficient. This
surplus is divided between the bidders and the seller: the bidders’ share
is minimized, and, hence, revenues are maximized, when the lowest-
value bidder has zero expected payoffs (see the proof in the Appendix).
The lowest-price all-pay auction maximizes total surplus because it as-
signs the object to the highest-value bidder. In addition, the zero-value
bidder who loses for sure also determines the price paid in the auction.
Hence, the zero-value bidder’s expected payoff is , which isAPnaB (0)n,n

zero by (7) for all .8a ! 1/n
For the standard case without a public good ( ), it is well knowna p 0

that the seller can obtain higher revenues by screening out low-value
bidders. Myerson (1981) and Riley and Samuelson (1981) prove that it
is revenue maximizing to screen out all bidders with values less than
the cut-off value, , that satisfies9v̂

ˆ1 � F(v)
v̂ � p 0. (10)

ˆf(v)

Screening can be implemented, for instance, by imposing a “minimum
bid” or reserve price. By using a reserve price, the seller lowers the
expected payoffs of bidders with values between zero and to zero, thusv̂
capturing part of the bidders’ rents.

When , however, the optimal mechanism cannot be imple-a 1 0
mented with a reserve price only since low-value bidders who abstain
from bidding would still get utility from the amount raised for the public
good. Consider instead the following two-stage auction mechanism,

, that involves both a reserve price, r, and an entry fee, J. In theG(r, J)
first stage, bidders are asked whether or not they want to participate.
If at least one of the bidders refuses to participate, the game ends and
the seller keeps the object. Otherwise, each bidder pays the seller the
entry fee J. Then bidders enter the second stage and play the lowest-

8 Indeed, a strictly positive bid by the zero-value bidder implies that the expected lowest
bid is strictly positive, and since the zero-value bidder’s expected profit is timesna � 1 ! 0
the expected lowest bid, she is better off bidding zero.

9 We make the common assumption that the marginal revenue MR(v) { v � {[1 �
is strictly increasing in v (see Myerson 1981). Under this assumption there isF(v)]/f (v)}

a unique solution to (10).



908 journal of political economy

price all-pay auction with reserve price r. In this auction, each bidder
either submits a bid of at least r or abstains from bidding. If all bidders
abstain, the object remains in the hands of the seller; otherwise it will
be sold to the bidder with the highest bid. All bidders who submit a
bid pay the auction price, which equals the lowest bid when all bidders
submit a bid and equals r otherwise.

The equilibrium strategy for the lowest-price all-pay auction in the
presence of a reserve price r changes as follows:

ˆ ˆB(v, v) for v ≥ v
B (v) { (11)r { ˆno bid for v ! v,

where
v n�2n � 1 zf(z)F(z)

ˆB(v, v) { r � dz, (12)� n�11 � na 1 � F(z)v̂

the threshold satisfies (10), and r is the unique solution tov̂
.10 Note that (12) has a structure similar to the so-n�1ˆ ˆvF(v) p (1 � a)r

lution derived in proposition 2 for . The reason is that for biddersk p n
with values , the optimal bids again follow by equating the expectedˆv 1 v
marginal benefits and costs in (5) and (6), respectively. The only dif-
ference is that the boundary condition is now given by insteadˆB (v) p rr

of .B(0) p 0
Proposition 5. The optimal fund-raising mechanism is given by

the two-stage mechanism , in which bidders first decide whetherG(r, J)
or not to pay an entry fee J and then compete in a lowest-price all-pay
auction with reserve price r, where

n�1ˆ ˆ(1 � a)r p vF(v) ,

ˆ(1 � na)J p ar(n � 1)[1 � F(v)],

and satisfies (10). In equilibrium, all bidders participate and playv̂
according to (11). The total amount raised is increasing in a.

In practice, fund-raising events frequently employ structures with
some of the characteristics of G. Under one common structure, atten-
dees are charged a fee for dinner and drinks and then are allowed to
bid in auctions later in the event. However, these fund-raisers usually
use winner-pay auctions and thus do not maximize revenue. Indeed, an

10 The reserve price r can be derived by noting that, in equilibrium, a bidder with value
must be indifferent between abstaining and bidding r. Hencev̂

n�1ˆ ˆ ˆ ˆa(n � 1)r[1 � F(v)] p �r � ar {1 � (n � 1)[1 � F(v)]} � vF(v) ,

where is the expected number of other bidders who submit a bid inˆ(n � 1)[1 � F(v)]
excess of r.



how (not) to raise money 909

easy corollary to proposition 5 is that the formats most commonly em-
ployed in practice are nonoptimal.

Corollary. Lotteries and winner-pay auctions (with or without
reserve prices) are nonoptimal.

The intuition is that a lottery does not maximize revenues because
the expected payoff of the lowest-value bidder is strictly positive, and
the object is not necessarily allocated to the bidder with the highest
value. A winner-pay auction does not maximize revenues since the
lowest-value bidder expects strictly positive utility from the winner’s
payment.

V. Conclusion

Large voluntary contributions, such as the recent $24 billion committed
by Bill Gates to the Bill and Melinda Gates Foundation, make up a
substantial part of total fund-raising revenue today.11 Not surprisingly,
such gifts garner significant attention in the popular media (“Bill’s Big-
gest Bet Yet,” Newsweek, February 4, 2002, 46). The vast majority of fund-
raising organizations, however, seek small contributions from a large
number of donors. These organizations frequently prefer lotteries and
auctions over the solicitation of voluntary contributions.12

Moreover, as electronic commerce on the Internet has grown, Web
sites offering charity auctions have proliferated. Electronic auction lead-
ers such as eBay and Yahoo! have specific sites for charity auctions in
which dozens of items are sold each day. The established fund-raising
community has taken notice of these developments. In a recent report
for the W. K. Kellogg Foundation, Reis and Clohesy (2000) identified
auctions as one of the most important, and fastest-growing, options that
fund-raisers use to leverage the power of the Internet. Given these
trends, it is clear that professional fund-raisers can profit from an im-
proved auction design.

Currently, most fund-raisers employ standard auctions in which only
the winner pays. These familiar formats have long been applied in the
sales of a variety of goods, and their revenue-generating virtues are well
established, both in theory and in practice (e.g., Klemperer 1999). We
show, however, that they are ill suited for fund-raising. The problem
with winner-pay auctions in this context is one of opportunity costs. A
high bid by one bidder imposes a positive externality on all others,
which they forgo if they top the high bid. Bids are suppressed as a result,
and so are revenues. We show that the amount raised by winner-pay

11 Total giving was an estimated $190 billion in 1999, according to Giving USA.
12 For example, in the year 2000, Ducks Unlimited raised a total of $75 million from

special events organized by its 3,300 local chapters, with over 50 percent of the revenue
coming from auctions.
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auctions is surprisingly low even when people are indifferent between
a dollar donated and a dollar kept.

The elimination of positive externalities associated with others’ bids
does not occur when bidders have to pay irrespective of whether they
win or lose. Many fund-raisers employ lotteries, for example, in which
losing tickets are not reimbursed (see Morgan 2000). Lotteries are gen-
erally not efficient, however, which negatively affects revenues. We in-
troduce a novel class of all-pay auctions, which are efficient while avoid-
ing the shortcomings of winner-pay formats. We rank the different all-pay
formats and demonstrate their superiority in terms of raising money
(see figs. 1 and 2). We prove that the lowest-price all-pay auction aug-
mented with a reserve price and an entry fee is the optimal fund-raising
mechanism.

Our findings are not just of theoretical interest. The frequent use of
lotteries as fund-raisers indicates that people are willing to accept an
obligation to pay even though they may lose. The all-pay formats studied
here may be characterized as incorporating “voluntary contributions”
into an efficient mechanism. They are easy to implement and may rev-
olutionize the way in which money is raised.

Appendix

Proof of Proposition 1

Consider a standard auction format in which the highest bidder wins and only
the winner pays. In an efficient auction, the surplus generated is nS p E(Y ) �1

, with R the auction’s revenue. This surplus is divided between the sellernaR
and the bidders: , where denotes the ex ante expectedS p R � U Ubidders bidders

payoffs for the group of bidders. Solving for R, we derive

nE(Y ) � U1 biddersR p . (A1)
1 � na

The revenue equivalence result for is standard. When , the winninga p 0 a p 1
bidder’s net payment is zero. A bidder with a value of one, who wins for sure,
therefore has an expected payoff of one. A simple envelope theorem argument
shows that the expected rents for a bidder with value v are given by

v

n�1U(v) p U(0) � F (z)dz�
0
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(see also lemma A1 in the proofs of propositions 4 and 5 below), from which
we derive

1

n�1U(0) p 1 � F(z) dz�
0

1

n�2p (n � 1) zf(z)F(z) dz�
0

1

n�1 n�2p (n � 1) zf(z){F(z) � F(z) [1 � F(z)]}dz�
0

1 n np [(n � 1)E(Y ) � E(Y )].1 2n

Moreover , so1U p n U(v)dF(v)∫0bidders

1 v

n�1U p nU(0) � n F(z) dzdF(v)bidders � �
0 0

1 1

n�1p nU(0) � n dF(v)F(z) dz� �
0 z

n np nU(0) � E(Y ) � E(Y )1 2

np nE(Y ).1

From the last line and (A1) we derive

n nE(Y ) � nE(Y )1 1 nR p p E(Y ),11 � n

which completes the proof. QED

Proof of Proposition 2

Let denote the bidding function given in (7). Since the denominator inB(7)
(7) is bounded away from zero for all when , the bidding functionv ! 1 a ! 1/k
is well defined for all and possibly diverges in the limit . The derivativev ! 1 v r 1
of the expected profit of a bidder with value v who bids as though of type w
and who faces rivals bidding according to isB(7)

e n�2 ′
n�1� p (B(w)Fv) p (n � 1)vf(w)F(w) � (1 � a)B (w)[1 � F (w)]w Yk�1

′
n�1 n�1� a(k � 1)B (w)[F (w) � F (w)].Y Yk k�1

Using the expression for given by (7), we can rewrite the marginal expectedB(7)
profits as

e n�2� p (B(w)Fv) p (n � 1)(v � w)f(w)F(w) ,w
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and it is therefore optimal for a bidder with value v to bid . The revenueB(v)
of the kth-price all-pay auction equals

1 1n

n nR p B(v)dF (v) � k B(v)dF (v)� � Y � Yi k
ipk�1 0 0

1

p n B(v)dG(v),�
0

where

n1 k
n nG(v) { F (v) � F (v).� Y Yi kn nipk�1

Note that is increasing with and . UsingG(7) G(0) p 0 G(1) p 1
, we can rewrite the distribution as

n
n(1/n)� F p F G(7)Yip1 i

k�11
n nG(v) p F(v) � [F (v) � F (v)]� Y Yk in ip1

k�1 n n1 n j n�j j n�jnp F(v) � F(v) [1 � F(v)] � F(v) [1 � F(v)]� � �( ) ( ){ }j jn ip1 jpn�1�k jpn�1�i

k�1 n�i1 j n�jnp F(v) � F(v) [1 � F(v)]� � ( )jn ip1 jpn�1�k

n�1 n�j1 j n�jnp F(v) � F(v) [1 � F(v)]� � ( )jn jpn�1�k ip1

n�1p F(v) � [1 � F(v)]F (v),Yk�1

where we used some basic properties of order statistics (see Mood, Graybill, and
Boes 1963). The revenue of the kth-price all-pay auction thus becomes

1 v n�2(n � 1)zf(z)F(z)
R p n dzdG(v)� �

n�1 n�1(1 � ka)[1 � F (z)] � a(k � 1)[1 � F (z)]0 0 Y Yk�1 k

1 1 n�2(n � 1)zf(z)F(z)
p n dG(v) dz� �[ ]

n�1 n�1(1 � ka)[1 � F (z)] � a(k � 1)[1 � F (z)]0 z Y Yk�1 k

1
n�1z[1 � F (z)]Yk�1

np dF (z),� Y2
n�1 n�1(1 � ka)[1 � F (z)] � a(k � 1)[1 � F (z)]0 Y Yk�1 k

where we used .n�1G(1) � G(z) p [1 � F(z)][1 � F (z)]Yk�1

The derivative of (8) with respect to a is the integral of a strictly positive
function times

n�1 n�1k[1 � F (z)] � (k � 1)[1 � F (z)] pY Yk�1 k

n�1 n�1 n�1[1 � F (z)] � (k � 1)[F (z) � F (z)] 1 0Y Y Yk�1 k k�1



how (not) to raise money 913

for all . Hence revenues are increasing in a. Note that the revenue of thez ! 1
kth-price all-pay auction (8) can be written as

�11
n�1 n�1F (z) � F (z)Y Yk k�1AP

nR p z (1 � a) � (k � 1)a dF (z).k,n � Y2{ [ ]}
n�11 � F (z)0 Yk�1

A sufficient condition for revenues to be increasing in k is that the term between
the brackets is increasing in k for all , 1. We first make this conditionz ( 0
somewhat more intuitive. Consider an urn filled with red and blue balls and let

be the chance of drawing a blue ball, where . Suppose thatq p 1 � F(z) 0 ! q ! 1
we draw times with replacement. The above condition can then be re-n � 1
phrased as follows: the chance of drawing exactly blue balls, given that atk � 1
least blue balls were drawn, is increasing in k. Hence, for all k it has to bek � 1
true that

k�1 n�k k n�k�1n�1 n�1q (1 � q) q (1 � q)( ) ( )k�1 k
! .n�1 n�1j n�j�1 j n�j�1n�1 n�1� q (1 � q) � q (1 � q)( ) ( )jpk�1 jpkj j

Introducing , we can rearrange the above inequality asx { q/(1 � q) 1 0

n�1 n�1n�1( ) ( )k j j�k1 � x 1 � x ! 1.�[ ] [ ]n�1 n�1jpk�1( ) ( )k�1 k

The left side of this inequality can be expanded as , wheren�k i1 �� a xiip1

n�1 n�1 n�1( ) ( ) ( ) nik�i k�i�1 k�i�1
a p � p � ! 0,i n�1 n�1 n�1 (n � k)(k � i)( ) ( ) ( )k k�1 k�1

which shows that revenues increase in k.
To prove that a lottery yields less revenue than all-pay auctions, it is sufficient

to show that the first-price all-pay auction revenue-dominates a lottery. Let
and denote the expected revenue from a lottery and an all-payLOT,a AP,aR R

auction, respectively, given . In both formats, bidders’ payments are equala 1 0
to their bids and acts as a simple rebate. Hence,a 1 0

LOT,0RLOT,aR p
1 � a

since, in equilibrium, each bidder submits a bid equal to times the1/(1 � a)
equilibrium bid for . Likewise,a p 0

AP,0RAP,aR p .
1 � a

The first-price all-pay auction is efficient; that is, the object is always allocated
to the bidder with the highest value, whereas a lottery is not. As, by assumption,
the bidder with the highest value is the bidder with the highest marginal revenue,
it follows from lemma A2 below (see the proofs of propositions 4 and 5) that

LOT,0 AP,0R ! R
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since for the utility for the lowest type equals zero for both the lotterya p 0
and the all-pay auction. Therefore,

LOT,a AP,aR ! R

for all .0 ≤ a ! 1
Finally, to prove that revenue may decrease with n, we compare the revenues

of the th-price all-pay auction with and n players when(n � 1) n � 1 a r
. In this limit, the revenue with players tends to1/(n � 1) n � 1

1
n�2n � 1 1 � F (z)YAP n�2

n�1lim R p z dF (z),n�1,n�1 � Y2[ ]
n�2n � 2 1 � F (z)ar1/(n�1) 0 Yn�1

which diverges to infinity as for all z. The revenue with n playersn�21 � F (z) p 0Yn�1

is equal to

1
n�1n � 1 1 � F (z)YAP n�2

nlim R p z dF (z),n�1,n � Y2[ ]
n�1n � 2 1 � F (z)ar1/(n�1) 0 Yn�1

which is finite. Hence, for a close to , revenues are higher with1/(n � 1) n � 1
bidders than with n bidders. QED

Proof of Proposition 3

First, consider the two cases (i) and (ii) and . When ,a ≥ 1 a 1 1/n k p n a ≥ 1
any contribution to the public good returns at least as much as it costs, and it
is optimal to bid M. This is also true for the zero-value bidder in the lowest-
price all-pay auction when . Thus, in both cases i and ii, anda 1 1/n v* p 0
revenue equals nM.

Next, consider the case and . The condition determining the cutk ! n a ! 1
point is that the difference between the expected payoff of bidding M andv*

is zero:APB (v*)k,n

n�1 v*
n�1 n�10 p [F (v*) � F (v*)]� Y Yj�1 jj � 1jp1

AP
n�1 n�1� [M � B (v*)](ak � 1)[F (v*) � F (v*)]k,n Y Yk k�1

AP
n�1� [M � B (v*)](1 � a)[1 � F (v*)]. (A2)k,n Yk

To understand the right-hand side of (A2), consider a bidder with value andv*
assume that all others bid according to in (9). The expression in theAPB (v, M)k,n

top line captures the bidder’s increased chance of winning the object worth
when she raises her bid from to M. The expression in the secondAPv* B (v*)k,n

line pertains to the case in which she is the kth-highest bidder and, by bidding
M, she increases the price she and the highest bidders pay from(k � 1)

to M. The third line applies when is not among the k highestAP APB (v*) B (v*)k,n k,n

bids and by bidding M the bidder increases only her own price. When these
benefits and costs balance, the bidder is indifferent between bidding APB (v*)k,n

and M.
To show that there exists an interior solution to (A2), we define0 ! v* ! 1

n�1 n�1 n�1z(v) { (ak � 1)[F (v) � F (v)] � (1 � a)[1 � F (v)]Y Y Yk k�1 k
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and
n�1 vAP

n�1 n�1w(v) { [M � B (v)]z(v) � [F (v) � F (v)].�k,n Y Yj�1 jj � 1jp1

The indifference condition (A2) then becomes . First note thatw(v*) p 0
as . Since diverges when v tends to one (if not before),APw(0) ! 0 z(0) ! 0 B (v)k,n

there must be some value for which . At that value, .AP˜ ˜ ˜v ! 1 B (v) p M w(v) 1 0k,n

Hence, continuity of implies that there exists an interior value in whichw(7)
vanishes. Let denote the smallest v for which .w(7) 0 ! v* ! 1 w(v) p 0

To prove that (9) constitutes an equilibrium, we need to show that (i) bidders
with values submit bids according to a well-defined increasing bid function,v ! v*
(ii) this bid function follows from the same equilibrium differential equation
as in proposition 2, and (iii) bidders with values strictly prefer to bid Mv ≥ v*
given others’ equilibrium bids. Condition ii is readily checked. Condition iii
follows immediately from (A2), since for bidders with values only thev 1 v*
potential gain in the top line changes. Hence, if a bidder with is indif-v p v*
ferent between bidding M and , bidders with types strictly preferAPB (v*) v 1 v*k,n

to bid M. The only condition that remains to be checked is i.
Let be the smallest v for which . We first show that is wellAPv** z(v) p 0 B (v)k,n

defined and increasing in v for all and then show that . Recallv ! v** v* ≤ v**
from (7) that

v n�2(n � 1)zf(z)F(z)APB (v) p dz,k,n �
n�1 n�1�(ak � 1)[1 � F (z)] � a(k � 1)[1 � F (z)]0 Y Yk�1 k

which is well defined and strictly increasing as long as the denominator is pos-
itive, that is, when . As is continuous and , is strictlyAPz(v) ! 0 z(7) z(0) ! 0 B (v)k,n

increasing in v for all . (Note that by the definition of , the derivativev ! v** v**
of with respect to v approaches infinity as v approaches v**.) ClearlyAPB (v)k,n

, and since , continuity of implies that for somew(v**) ≥ 0 w(0) ! 0 w(7) w(v) p 0
: the smallest v for which this holds is , so .v ≤ v** v* v* ≤ v**

Finally, for all when since the cut point satisfiesAPR ! nM k ! n a ! 1 v* 1 0k,n

in this case. Thus there is a positive probability that at least one bidder bids less
than M, and expected revenue is thus less than nM. From the proof of prop-
osition 2 we know that when , so when . QEDLOT AP LOTR ! R a ! 1 R ! nM a ! 11,n

Proofs of Propositions 4 and 5

To prove that the lowest-price all-pay auction is optimal, we consider more
general mechanisms and derive their revenue properties in lemmas A1 and A2.
First, some notation:

nV { [0, 1]

and

n�1V { [0, 1] ,�i

with typical elements and , re-v p (v , … , v ) v { (v , … , v , v , … , v )1 n �i 1 i�1 i�1 n

spectively. Let

g(v) { f(v )� j
j
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be the joint density of v, and let

g (v ) { f(v )��i �i j
j(i

be the joint density of . We define the marginal revenuev MR (v ) { v ��i i i i

and assume that it is strictly increasing in .{[1 � F(v )]/f(v )} vi i i

We follow Myerson (1981) closely. Using the revelation principle, we may
assume, without loss of generality, that the seller considers feasible direct mech-
anisms only.13 Let (p, x) denote a feasible direct mechanism, where p : V r [0,

with and . We interpret as the probability thatn n1] � p (v) ≤ 1 x : V r � p(v)j ij

bidder i wins and as the expected payments by i to the seller when thex (v)i

vector of values is truthfully announced. Given , bidder i’sv p (v , … , v ) v1 n i

interim utility under (p, x) is

n

U(p, x, v ) { v p(v) � x (v) � a x (v) g (v )dv . (A3)�i i � i i i j �i �i �i[ ]
jp1V�i

Similarly, the seller’s expected utility is

n

U (p, x) { x (v)g(v)dv.�0 � i
ip1V

The following two lemmas will be used to solve the seller’s problem.
Lemma A1. Let (p, x) be a feasible direct revelation mechanism. Then the

interim utility of (p, x) for bidder i is given by

vi

U(p, x, v ) p U(p, x, 0) � Q (w)dw, (A4)i i i � i
0

with .Q (v ) { E {p(v)}i i v i�i

Proof. The proof follows in a straightforward manner from the incentive
compatibility constraints (see Myerson 1981). QED

Lemma A2. Let (p, x) be a feasible direct revelation mechanism. The seller’s
expected revenue from (p, x) is given by

n nE {� MR (v )p(v)} � � U(p, x, 0)v i i i iip1 ip1
U (p, x) p . (A5)0 1 � na

Proof. Define , , andX p x (v)g(v)dv W p v p(v)g(v)dv Y p U(p, x,∫ ∫ ∫V V Vi i i i i i ii

. By (A3), we have, for all i,v )f(v )dvi i i

n

Y p W � X � a X . (A6)�i i i j
jp1

13 A direct mechanism is a mechanism in which bidders are simply asked to announce
their values. We say that a mechanism is feasible if it satisfies individual rationality con-
ditions, incentive compatibility conditions, and straightforward restrictions on the allo-
cation rule.
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Summing over i in (A6) and rearranging shows that the seller’s expected revenue
from a feasible direct revelation mechanism (p, x) is given by

n n
n � W �� Yi iip1 ip1

U (p, x) p X p . (A7)�0 i 1 � naip1

Taking the expectation of (A4) over and using integration by parts, we obtainvi

1 � F(v )iY p U(p, x, 0) � E Q (v ) ,i i v i ii{ }f(v )i

so that (A5) follows. QED
Now, using lemma A2, we prove propositions 4 and 5. From (A5), it is clear

that a feasible auction mechanism is revenue maximizing if it (1) assigns the
object to the bidder with the highest marginal revenue if the highest marginal
revenue is positive and leaves the object in the hands of the seller otherwise,
and (2) gives the lowest type zero expected utility.

We first prove proposition 4. Under the restriction that the seller cannot
commit to keeping the good, a feasible auction mechanism is revenue maxi-
mizing if it assigns the good to the bidder with the highest marginal revenue
(even if negative) and guarantees the lowest-type bidder zero expected utility.
It is clear that in (7) is strictly increasing in v since the denominator ofAPB (v)n,n

the integrand in (7) is strictly positive when . So the lowest-price auctiona ! 1/n
assigns the object to the bidder with the highest value and, hence, to the bidder
with the highest marginal revenue. Furthermore, a zero-type bidder bids zero
according to (7), which sets the auction’s revenue at zero, leaving the lowest-
type bidder with zero expected utility. Hence, the lowest-price all-pay auction is
revenue maximizing. (We have already shown that revenue increases with a in
the proof of proposition 2.)

Next we turn to proposition 5. In the equilibrium defined by (11), only bidders
with values submit a bid according to a strictly increasing bid functionˆv 1 v
whereas bidders with values abstain from bidding. Hence, G assigns theˆv ! v
good only to bidders with positive marginal revenues (if at all). Moreover, the
bidding function in (11) is strictly increasing in v so that the bidder with the
highest marginal revenue receives the object. Finally, the expected utility of a
bidder with the lowest type equals zero over both stages of G since

ˆU(p, x, 0) p (na � 1)J � ar(n � 1)[1 � F(v)] p 0

by the definition of J. The given strategies constitute a Bayesian Nash equilib-
rium, and when these are played, G maximizes (A5) and is thus optimal. Rev-
enues increase with a since the denominator of (A5) is decreasing in a. QED
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