
Conducting an experiment

7
discontinued in the following series of sessions. The communicati
treatment seemed to make little difference in Series 1, and the sub

quent sessions were conducted under conditions of full communicati<
The results of Series 1 clustered around the common prediction

models 1-8, and 16 and seem to decisively reject models 9-15 for t
committee institution and environment. Series 2 was designed to isol
models 5 and 7 from 1-4, 6, and 16. The results did not support mod
5 and 7 and clustered around the common prediction of the other modi
Series 3 sessions were designed so core and voting equilibrium did
exist; only the obvious point (model 16) and min-max set (model'
were defined. The committee outcomes were dispersed around the mi,
max set, though the explanatory power of the set was not high. OnJ
other hand, absence of the core did not result in complete dispersi
of the outcomes over the blackboard as some theories have predictl

Fiorina and Plott (1978) is a good example of a seminal experim
conducted with little more than paper, pencil, and chalkboard for eqt
ment and facilities. In this, as in any other good experiment, most
the work goes into defining the critical issues, identifying the re1ev:,
theories and facts, and designing critical experiments before any subj
are recruited. The published paper includes detailed instructions
parameters to enable the reader to replicate their research. Instructi
have been reproduced in Appendix II.

Data analysis

fie that you have just assembled the raw data from your recent
'.ments on market efficiency. You gaze at sheets of paper covered

~pmbers specifying which subjects did what and when they did it.
~.data support the efficient-markets hypothesis or not? You could

the raw data for hours and be none the wiser. It is time to begin
qta analysis. You will transform and process the raw data in
:'ways to find out what they have to say. Think of data analysis
rm of interrogation. But be gentle - coax the data to tell their
()ry. You will learn very little if you torture the data until they'"
s.

chapter introduces the basic tools for analyzing experimental
,fany experimentalists prefer a two-phase approach. The first

"s,qualitative or descriptive and is intended to give an overview
fitthe data have to say. The tools are graphs and summary statistics.
se(;ond phase is more quantitative and is intended to give specific
~r~to specific questions. Here the tools are inferential statistics.

,;perimental data and happenstance data raise the same general is-~"

'Qp require mostly the same analytical techniques, but there are
It differences in emphasis. Experimental data often come from

ycreated environments and are unlikely to be familiar to most
IS, so the descriptive phase is particularly important. In most re-
, 'statistical inference is quite straightforward for data obtained in
esigned experiments. Some subtleties do arise, which we discuss
Hon 7.2. Section 7.3 should provide helpful perspectives on sta-

(;~ltests of experimental data and a quick review of several specific
fs,but for systematic training you will have to consult texts such as

°0etal. (1978), Conover (1980), or Kirk (1982). Finally, after sum-

85
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marizing our advice on data analysis, we illustrate the main ideas while b 7 Data from trading period Day 18 of double-auction asset

reviewing some of the literature on first price auctions.
et as2

7.1 Graphs and summary statistics
subper time id cpid event price

Day 18 of session Das2 was about as simple and straightforwar

u- u qty bbid qty bask qty---- ----- u---
1 81 5

--- --u _u _u-

as a trading period can be in a double-auctionasset-market experiment.

- ASK 1.65 1.00
u-

1 87 6
0.00 1.00 1.65 1.00

1
- ASK 2.00 1.00 0.00

There were 8 traders divided equally into two types, each trader initially
98 2 - BID 0.70 1.00

1.00 1.65 1.00

1 104 3
0.70 1.00 1.65 1.00

endowed with three shares. At the beginningof each 2-minute trading

- ASK 2.00 1.00
1 107

0.70 1.00 1.65
0 . ASK 1.50 1.00

1.00

period ("Day"), all traders were notified of their per share payouts fo

1 120 7
0.70 1.00 1.50 1.00

1 126
ASK 1.70 1.00 0.70 1.00 1.50

the Day; for Day 18 the payouts were 25 cents for type 1 traders an

6 ASK 1.55 1.00
1.00

1 133 0
0.70 1.00 1.50 1.00

BID 0.70 1.00

75 cents for type 2 traders. (Some Days type 1 traders get a payout 0

1 166 7
0.70 1.00 1.50 1.00

1 175
ASK 1.80 1.00 0.70 1.00 1.50

0 BID 0.74
1.00

$1.95 and some Days type2 traders get a payout of $1.65 in this session.
1 189 5

1.00 0.74 1.00 1.50 1.00
ASK 1.45 1.00

,. 217 2
0.74 1.00 1.45 1.00

You might like to know whether all shares were acquired by the trade
1. 235

ASK 1.49 1.00 0.74 1.00 1.45
4 - ASK 1.00 1.00

1.00

who valued them most highly (type 2), whether prices approached th
1 240 0

0.74 1.00 1.00 1.00

1 248
ASK 1.40 1.00 0.74 1.00 1.00

fundamental value of 75 cents, whether prices were volatile, whethe

6 - ASK 2.00 1.00
1.00

1 254 3
0.74 1.00 1.00 1.00- BID 0.74 1.00

convergence was fast or slow or nonexistent, and so on.

1 259 2
0.74 1.00 1.00 1.00

ASK 1.45 1.00
289 0

0.74 1.00 1.00 1.00

Table 7.1 provides a complete record of all activity in the tradin

ASK 0.95 1.00
292 5 0

0.74 1.00 0.95 1.00
SOLD 0.74 1.00

period, about 100 events (bids, asks, etc) in all. Look at Table 7.1 f

296 0
0.74 1.00 0.95 1.00

301 6
CANBID0.74 -- 0.74 1.00 0.95 1.00

a minute or two. Do these raw data answer your questions clearly? No
306 5

ASK 0.99 1.00 0.74 1.00 0.95
3 SOLD 0.74

1.00

look at Figure 7.1, where the same data are plotted. (The upper st

311 3
1.00 0.74 1.00 0.95 1.00

317 2
CANBID0.74 -- 0.70 1.00 0.95 1.00

function is the best ask price, the lower step function is the best b'
337

BID 0.74 1.00 0.74 1.00 0.95
0 - BID 0.74 1.00

1.00

345 2
0.74 1.00 0.95 1.00

price, and stars indicate transaction prices. The horizontal dashed lin

BID 0.70 1.00
375 4

0.74 1.00 0.95 1.00

is the equilibrium price, $0.75 per share. The realized payouts (lB, 2B)

380
BID 0.20 1.00 0.74 1.00 0.952 - BID 0.74 1.00

1.00
395 6

0.74 1.00 0.95 1.00

for the two trader types are indicated in the upper left corner, and t

- ASK 0.94 1.00
415 4 - CANASK1.00

0.74 1.00 0.94 1.00

final allocation of shares is indicated in the lower right corner.) You C
427 1

-- 0.74 1.00 0.94 1.00

457
BID 0.65 1.00 0.74 1.00 0.94

2
1.00

see at a glance in Figure 7.1 exactly what happened on Day 18 of sessi
468

ASK 0.93 1.00 0.74 1.00 0.93
0 CANBID0.74

1.00

Das1. After about 10 seconds the traders had begun to digest the b
473 4

-- 0.74 1.00 0.93 1.00- CANASK0.70
473 4

-- 0.74 1.00 0.93 1.00

news (the low payouts to type 1 and 2 traders are indicated in the up

0 SOLD 0.74 1.00
491 5 2 SOLD 0.74

0.74 1.00 0.93 1.00

494
1.00 0.74 1.00 0.93

left corner of the graph by the notation lB, 2B). Bids rose quickly

2 - CANBID 0.74
1.00

495 5
-- 0.65 1.00 0.93 1.00

near the fundamental value of 75 cents and asks gradually declin
506 0

CANASK1.45 -- 0.65 1.00 0.93 1.00

510
BID 0.74 1.00 0.74 1.00 0.93

toward that value, taking about 60 seconds to converge. By this ti

6 ASK 0.90 1.00
1.00

531 2
0.74 1.00 0.90 1.00

ASK 0.91 1.00

traders transacted 6 times, all accepted bids, Accepted asks were co
538 0

0.74 1.00 0.90 1.00
ASK 0.85 1.00

mon in the 8 later transactions. Except in the first 30 seconds, the p

547 0 - CANBID 0.74
0.74 1.00 0.85 1.00

552 4
-- 0.65 1.00 0.85 1.00- CANASK O. 72

of trade was quite steady and all transactions prices were between
552 4

-- 0.65 1.00 0.85 1.00
0 SOLD 0.74

571 2
1.00 0.65 1.00 0.85

and 75 cents per share. By the end of the trading period, all 24 sha

- ASK 0.88 1.00
1.00

582 0 - BID 0.74
0.65 1.00 0.85 1.00

were held by the right type (2) of traders.

609 0
1.00 0.74 1.00 0.85- CANBID 0.74

1.00-- 0.65 1.00 0.85 1.00

Summary statistics can be very useful in conjunction with graphs

even on their own. The final allocations shown in the lower right cor'.
of the graph are summary statistics. Another example not shown e
plicitly is the mean transaction price. It is $0.725, a - 2.5 cent deviat'
from equilibrium. This single number summarizes much of the in
mation in Table 7.1 relevant to testing equilibrium theory.
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Table 7.1 (cont.)

$2.40118
$2.30i 28

period subper time id cpid event price qty bbid qty bask $2.20
-00_00 00__- 00- 00 _0000 _0000 -00 _00 -00- $2.10

18 1 614 6 - CANASK 0.74 00 0.65 1.00 0.85 i~:~~
18 1 614 6 0 SOLD 0.74 1.00 0.65 1.00 0.85 $1.80
18 1 620 4 ASK 0.74 1.00 0.65 1.00 0.74 $1. 70

18 1 624 2 - BrD 0.70 1.00 0.70 1.00 0.74 i:';~
18 2 655 2 BID 0.66 1.00 0.66 1.00 0.74 $1: 40

18 2 674 0 BID 0.73 1.00 0.73 1.00 0.74 ~$1.30
18 2 683 7 - ASK 0.80 1.00 0.73 1.00 0.74 I $1.20

18 2 692 6 ASK 0.74 1.00 0.73 1.00 0.74 i i::~~
18 2 735 0 - CANDID0.73 -- 0.66 1.00 0.74 $0.90
18 2 739 7 - CANASK0.70 00 0.66 1.00 0.74 $0.80..
18 2 739 7 0 SOLD 0.73 1.00 0.66 1.00 0.74 $0.70

18 2 745 4 - CANASK 0.74 00 0.66 1.00 0.74 i~:;~
18 2 751 2 - BID 0.67 1.00 0.67 1.00 0.74 $0.40

18 2 764 6 - ASK 0.70 1.00 0.67 1.00 0.70 . $0.30 0
18 2 772 0 - CANBID0,74 00 0.67 1.00 O.70 i~:~~j I 24
182m 6 - CANASK0.70 -- 0.67 1.00 0.85 $0 00

182m 0 6 BOUGHT0.70 1.00 0.67 1.00 0.85 . 0 to 4'0 ~O gO 1'00 1'20
18 2 787 4 - ASK 0.71 1.00 0.67 1.00 0.71 TIM E (in seconds)

18 2 816 0 - ,CANBID 0.74 00 0.67 1.00 0.71

18 2 824 4 - CANASK 0.71 00 0.67 1.00 0.85 Fig. 7.1 Time graph for Day 18 of Das2. The upper step function is18 2 824 0 4 BOUGHT0.71 1.00 0.67 1.00 0.85 the best k
.
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d18 2 830 7 - ASK 0.70 1.00 0.67 1.00 0.70 . ,as pnce, .e ow~r s ep unc IOn IS t e est I pnce, an
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18 2 872 7 - CANASK 0.70 00 0.67 1.00 0.85 hbnum pnce, $0,75 per share. The realized payouts (lB, 2B) for the
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18 2 911 2 - ASK 0.73 1.00 0.67 1.00 0.73 .' a oca IOn 0 s ares ISIn Icate In t e ower nght corner.
18 2 915 7 - ASK 0.80 1.00 0.67 1.00 0.73,1"
18 2 917 6 - ASK 0.74 1.00 0.67 1.00 0.73 "'1'[1

18 2 932 0 - CANBID 0.74 00 0.67 1.00 O.73 1.~'
18 2 938 2 - CANASK0.73 -- 0.67 1.00 0.741;~
18 2 938 0 2 BOUGHT0.73 1.00 0.67 1.000.74 I.'"
18 2 946 6 - ASK 0.72 1.00 0.67 1.00 O.72;,,}.w, F h I . ,
18 2 962 0 - BID 0.70 1.00 0.70 1.00 0.72 '1:~ ".or anot er examp e, consIder the nsky choice experiments reported
18 2 973 0 - CANBID0.70 -- 0.67 1.00 0.70,.'it!,~ ,inKachelmeierand Shehata (1992) Their raw data are certaint y equi18 2 974 7 - CANASK0.70 -- 0.67 1.00 0.72 ~'1,". . v-

18 2 974 7 0 SOLD 0.70 1.00 0.67 1.00 0.721. lents (selhng prices elicited via the Becker-DeGroot-Marschak pro-18 2 991 2 - BID 0.71 1.00 0.71 1.00 0.72 1,(1);. cedu t
.

d
'

S t
.

4 2) f .
b . ,

18 2 1005 1 - BID 0.70 1.00 0.71 1.00 0.72 1 ,re men lOne m ec IOn. rom vanous su Jects for vanous
18 2 1028 0 - BID 0.70 1.00 0.71 1.00 0.72,\*1; .l.otteries with differing probabilities of winning a fixed cash prize. With18 2 1049 2 - ASK 0.72 1.00 0.71 1.000.72 1.00 SOt
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18 2 1076 0 - CANBID 0.74 00 0.71 1.00 0.72i.~ ., na s or eac 0 su Jec s m t elr rst seSSIOn,t e raw data consIsts
18 2 1079 6 - CANASK0.72 -- 0.71 1.00 0.72 'i1. ,.of1,000 numbers. Their main summary statistic is called CE ratio, the18 2 1079 0 6 BOUGHT0.72 1.00 0.71 1.00 O.72J. """ t

'
f h . .

1
18 2 1086 2 - ASK 0.73 1.00 0.71 1.00 0.73 l,:: ~.rCl,1.0.0 t e certamty eqUlva ent to the expected value, usually averaged
18 2 1129 0 - CANBID0.74 -- 0.71 1.00 0.73 I. '~)Versubjects. Figure 7.2 reproduces their Figure 1 You can see at a18 2 1131 2 - CANASK 0.73 -- 0.71 1.00 0.85 1. J ' , . .
18 2 1131 0 2 BOUGHT0.73 1.00 0.71 1.00 0.85 , 1.00 glance that subjects demanded a substantial premium before they were
18 2 1165 0 - BID 0.73 1.00 0.73 1.00 0.85 1.~~ ~willin g to sell the low-probabilit y 10tterI

'
es but the pre I

'
um d d18 2 1196 2 - ASK 0.84 1.00 0.73 1.00 0.84 1..~,J .'. '" ' . m ecrease
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" . , ..
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,; ~stituted for the low cash prize.

Time ISmeasured In tenths of a second from the begInmng of the tradmg penod, ).in' . .
Traders with I.D.'s 0-3 are type 1 and have payout $0.25per share on Day18'JJ< i ' .owcan you ~ho~sea good summarydescnptIon o~your data? :er-
Traders with I.D.'s 4-7 are type 2 and have payout $0.75.The counterpartyin.'~ ., ,h~psthe best advIce ISto look at past work for an effectIve presentatIOn,
a transaction appears in the cpid column. In this session the quantity traded
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andmodify it to deal with special features of your own data. The tradition
(qty) is always 1.0, Le., tra~es are for single indivisible shares. The best bid : ',,_behind Figure 7.1, for example, goes back at least to Smith (1962). Butand best ask are denoted bbld and bask. " 'C'"'"



Legend: - - - + - - - Low prize condition (1 yuan)

0 High prize condition(10 yuan)

Fig. 7.2 Certainty equivalents and expected values.

the display was modified to show bids, asks, and transactions in c
time, rather than just the traditional transaction sequences, becaus
important goal for the experiment was to see how bids and asks ad
over time.

A good summary of your data accomplishes several goals. First;
allowsyou to see regularities (or irregularities) in the data that requ
further investigation. Graphs are a remarkably efficient means of scre
ing for erroneous data. It is equally important to spot correct but an
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~.ata. For example, summary data might show that one subject in
y choice experiment has a much lower CE ratio at low win prob-
ies than the other subjects. Further investigation might disclose
he low average is due to selling prices of zero. You should then
.whether the prices were correctly recorded, whether the subject
eq proper instructions, and so forth. If the data are in fact correct,
Ight wish to see whether other subjects indulge in zero selling
. The upshot might be a modified theory in which subjects with
QWexp~cted winnings and high subjective computational costs will
ro, with implications that go to the foundations of decision theory!
1 hadn't worked out the data summary, you probably wouldn't
~potted the zero bids and you would have missed the opportunity
-rect your data or to extend the theory.
second goal of qualitative data analysis is to guide subsequent
Htative analysis. For example, you may wish to analyze discrep-
s between theoretical equilibrium prices and actual prices in a
Ie-auction market. But what is the appropriate "actual price"? Is
.average transaction price in a trading period? The last transaction
? The midpoint of the bid-ask price interval? A summary graph
'igure 7.1 gives you a basis for making an appropriate choice and

ates whether other choices are likely to give different answers. Your
l! statistical inferences will be more reliable if they are grounded
ood descriptive analysis.
!Jhirdgoal is pedagogical. A good graphical display or set of de-
tive statistics gives your reader an easily accessible overview of your
. Jhe reader will then be encouraged to read on to your conclusions
Willbe in a better position to assess their credibility.

..'~tasummaries are less important for well-known happenstance data,
flasfinancial market data or national income accounts data compiled
government agencies. The econometrician analyzing such data prob-
. . already has an adequate perspective on the data and is aware of

!lain features. Her readers will want to get quickly to her contri-
tion, perhaps a more subtle inferential statistic, and may be impatient
th a lot of familiar descriptive statistics. By contrast, experimental
J( usually are new and in some respects unfamiliar, so a descriptive
Imary is essential.
ometimes the main question addressed in an experiment can be
(ered directly from the summary statistics or graphs. For example,
~ssuein a set of recent market experiments was whether a theoret-
ly inefficient market institution called CHQ was less efficient in prac-
than a theoretically more efficient institution called CH. Figure 7.3
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70

iation of the data. Some other economists (anonymous referees
: most part) insist on hypothesis tests even when the Savage test
~onclusive. They argue that your clever graphical presentation
,yerstate the weight of the evidence and that the discipline of
cting hypothesis tests will help keep you honest.
t practicing experimental economists, including both of us, take
rfuediate position. Occasionally the Savage test should convince
Ie most skeptical, and then it is sufficient. More often it will not
Experimental economists, unlike physicists, usually have to deal
any nuisance variables and relatively few observations, so even
designs and large budgets can not always produce transparent
.;When in doubt (or in doubt about referees) we recommend that
tiduct routine hypothesis tests.
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Statistical inference: Preliminaries

Suppose that your graphs and descriptive statistics do not give
I clear answers to some of your questions, even though your ex-
ental design and d~scriptive statistics are well chosen. At this point
lrnto the second phase of the data analysis: formal statistical tests,
'ljrences. The formal tests are generally meant to provide specific
~rs to questions of the form "Does treatment X affect outcome

For example, does the double auction market institution (treatment
DA) increase market efficiency (outcome Y) relative to an alter-
e institution (treatment X = CH)? Sometimes you ask questions

",__eform "Is outcome Y better predicted by model M1 or by model
?"

e most obvious way to answer the first sort of question is to compare
effects {YDA}associated with one treatment X = DA to the effects
.}associated an alternative treatment X = CH. If the YDA'Sare larger
average you might be tempted to conclude that the DA institution
l('re efficient. Likewise, you would be tempted to conclude that

dylM1 is better than M2 if on average its forecasts are more accurate.
p.(your conclusion might be incorrect because of experimental error.
'4.erest of this section will equip you with the conceptual tools for
Ilderstanding the sources and consequences of experimental error.
fer sections introduce statistical techniques for making correct infer-
~s even when some experimental error is unavoidable.

10

Fig. 7.3 Efficiencyunder the clearinghouse(CH) and quantity-o
clearinghouse(CHQ) institutions.Efficiencyis definedas tradingpr'
its paid as a percentage of maximumpossibletrading profits.The e
come from all 19 CH periods and the first 19 CHQ periods of t
sessions(Chq1-Ch4a and Chq2-Ch4b) reported in Friedman and c
troy (1993).

graphs efficiency in the two sessions using both institutions. (Efficiel
is defined as trading profits paid as a percentage of maximum possib
trading profits. The data come from all 19 CH periods and the first
CHQ periods of two sessions, Chq1-Ch4a and Chq2-Ch4b, reported
Friedman and Ostroy, 1993.) The answer is obvious from the graphs
it immediately strikes your eye that efficiency is always higher in t
CH markets, irrespective of the group of subjects or other nuisance
Leonard J. Savage referred to the pratice of drawing conclusions fro
such blindingly obvious graphs or summary statistics as the "interocul
trauma test."

Is any other test really necessary? Experimental physicists usually re
on Savage's test and seldom resort to formal hypothesis testing. Son
of our respected colleagues say privately that economists should fo110
the physicists' example. If the interocular trauma test is inconclusive
they argue, then you should rethink your experimental design or you

7.2.1 Basic concepts ,

Statistical procedures begin with a collection of observations. A
Ie observation is often called a run or experimental trial. A trial will
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include measurements of the treatments X and the outcomes Y. For

example, a trial (or unit of observation) in a sealed-bid auction expe
iment might consist of the value Vtand the bid bt of a single bidder'
a given period, together with block data such as the number of bidde
the distribution parameters for v, and the auction rules.

The appropriate unit of observation is not always clear. For instance,
in market experiments, is it a single transaction? A single market period?;
A subset of market periods? Or perhaps a single experimental sessio~
or even a whole set of sessions? The answer depends on the theoreti,
framework and the purpose of the experiment. For example, the marke
period is the natural unit when your purpose is to test theories of marke
equilibrium. If you were interested in the microdynamics of informati9
acquisition, by contrast, the natural unit of observation would be trari
actions or even individual trader bids and asks. At the other extrem
someone interested in the asymptotics of group learning behavior woul,
legitimately regard an entire experimental session as a single trial.

Suppose you have picked an appropriate definition of trial and 11<1'

have a set of observations to analyze. The fundamental problem y<
now must deal with is the imperfections of your set of observations."
the extent that you get different results on replication - that is, to 1
extent that outcomes differ when you (or another experimenter) rl
the experiments again with exactly the same set of treatments - yo
analysis must deal with experimental error. "

Experimental error has two sources: measurement and sampliIl,
Measurement error is conceptually straightforward. The values in yo
recorded observations may not be exactly the actual values. PerM
you misheard a bid in an oral auction, or perhaps you made a mista
in writing it down. Even more serious, you might have lost experimen
control and not been aware of it at the time. For example, you mii
have inadvertently given role A information to a role B subject. Or,
a game-theory experiment you may have transposed the intended pay'
matrix on every player's screen (as did one of us recently).

Careful choice of laboratory procedures, automating data captufea
transmission where possible, and building in redundancy should mi
mize the amount of erroneous data. You should always take a secr
precaution: Using your data summaries, check the raw data for Ja
outliers and other anomalies, and check whether the anomalies
actually measurement errors. When you detect erroneous data
should throw them out before you run statistical tests, because e~e
few bad data points (say, due to a misplaced decimal point) can af
your results.,

Sometimes failure of experimental controls produces data tha

interesting (e.g., the transposed matrix may induce a new coordi-
tion game instead of the intended coordination game) and you may

ant to retain it. Such reparametrization is permissible as long as your
',alysisrecognizes the inadvertent change in experime!ltal design (e.g.,
u have a randomized block but not strict factorial) and you acknowl-
1gethe problem in your write-up, perhaps in a footnote.
. ;he rest of this chapter will presume that you have chosen effective
oratory procedures and descriptive data summaries, so that the mea-

rement error consists mainly of minor round-off errors.

Samplingerror requires a more extensive discussion. Perhaps the best
ly'to think about it is to consider the collection of all possible trial
~~omesgiven your treatments. Since the time of Galton's classical
1iesof physical characteristics in human populations, this hypothet-
,collectionis called the population of outcomes. There is always some
iability in the population because of uncontrolled nuisances such as

jects' attention to the task. You may prefer to think of the variability
;l'andomfluctuations." Fo~ any given set of treatments, the variability
tlces some distribution for the possible outcomes. Logically enough,
induced distribution is called the population distribution. If you knew
population distribution, your inferential task would be trivial. For
tnple, if the population mean for DA efficiencies were larger than
population mean for CH efficiencies, then you would correctly con-
e that the DA institution is on average more efficient.
ontrivial statistics are necessary because the population distribution
ever be known precisely . Your budget and patience, however large,
low you to run only a finite number of experiments; you can never

'erve outcomes of all possible trials. Nevertheless you do have useful
)rniation about the population distribution because you have actually
,a subset of all possible trials and have recorded the outcomes. Thus
If aCtual data constitute a finite sample from the population distri-
ipn. §ampling error, the second source of experimental error, arises
the extent that your sample is not representative of the underlying
ifilation. In the DA versus CH example, the mean of your DA-
iel1cysample will almost always differ from the true mean of the
population, and similarly for the CH sample. These sampling errors

be large enough to lead you to the wrong conclusion about which
tution is more efficient.

7.2.2 Good samples and bad samples
You cannot expect to get a perfect sample, whose distribution

Iyceproduces the population distribution. But with some care you
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can minimize sampling error within the bounds of your finite resotir
That is, you can take steps to avoid bad samples and to get good sampl

There are two main ways of getting good samples. The first is to ma
the sample as close as possible to a classic random sample, in whi
each observation is independently selected from the population di
bution. That is, in a random sample, each point in the population
an equal chance of being selected in each observation. The other
is to try to take a "stratified" or balanced sample, in which you subdi'
the population into several segments and draw observations from e
segment with frequency proportional to the weight of the segmen
the population distribution. For example, in a voter survey (a j
experiment) each interviewee could be drawn from the voter popula
by some random device such as throwing a dart at a printout of registt
voters. This procedure could give you a truly random sample. Pro
sional interviewers usually prefer a balanced sample, in which they
ment the population by age, sex, education, location of residency
other observable variables, and then select a proportionate numbe
interviewees from each segment. A balanced sample will tend to prod
smaller sample errors than a random sample of the same size to.
extent that outcomes differ across segments, the segments are obsl
able, and their weights in the population are known. Otherwise, rand
samples are preferable.

Finding procedures that give you good (random or balanced) sam
is not always easy. The general problem is that there may be un
ognized relationships among relevant variables in your experimen
that your data represent a small and atypical portion of the popula
rather than the population as a whole. For example, suppose an
perimenter wants to measure the degree of altruism in individual:
jects. If he selects subjects in the usual way, advertising the opportti
to earn "substantial cash rewards" in undergraduate economics cla
and signing up volunteers, his altruism measurements probably will
be typical of the population of U.S. residents. He failed to recogn'
the possible relationship between the variables [attends economics cia.
and [responds to advertisement promising cash] and the outcome [
sured altruism]. As a result, he probably collected an unbalanced,
random biased sample.

Perhaps the most important advantage of experimental data is th
can provide better samples than happenstance data. Two example
bad samples of happenstance data may help drive this point home.

etcial/industrial, and consumer. When he regresses historical bank
ion quantities (amounts outstanding in each loan category) he
nstable coefficient estimates - the magnitude and even the sign

when he varies the beginning or ending dates of the historical
when he switches from monthly to quarterly data. The underlying

IIi turns out to be that the bank's policy has been to keep tight
lion the portfolio composition. For example from 1970 to 1985
:ateloans were not allowed to exceed 130 percent of the loan
() and never fell below 27 percent. The historical data therefore
'e from a thin slice of the hypothetical profitability population,
l result the separate effects of the explanatory variables (the loan
ies1 can't reliably be estimated from this unbalanced and
.lorn sample. Perhaps the analyst will have better luck with his
~lanalysis if he can find similar banks with different portfolio
:.a.J;1dcan construct a balanced sample from the combined data.
conometrician would call Sample 1 a case of insufficient variation
tlcollinearity. The problem need not arise from deliberate policy.
~inple, the historical capital/labor ratio and the factor price ratio
e almost constant in an industry, precluding good estimates of
ticity of substitution from historical data. Since focus variables
yare controllable in the laboratory, you can avoid bad samples
I't by choosing good experimental designs. Factorial and related
covered in Chapter 3 ensure that the focus variables vary
dently and over a sufficient range so that you can assess their

Bad Happenstance Sample 1. A bank analyst wants to esti
his bank's profitability in its major loan categories: real est

Bad Happenstance Sample 2. An antitrust analyst studies the
n§hip between concentration and price over time in several

Y defined industries. To her surprise she finds several industries
ich periods of lower prices seem to go with periods of greater
tration (i.e., fewer competing firms). Further investigation
~sthat in most of these cases both price and concentration were
by a third variable, the price of related goods. For example, in

idyrule industry, price decreases and increasing concentration were
ponsequences of dramatic reductions in the price of electronic
lators.

. yconometrician probably would call this an omitted-variables
lem or an identification problem, and could provide a long list of

. examples. The historical price data for slide rules were a biased
of their concentration-segmented population distribution
the demand-side relationship with the electronic calculator price
least its impact on slide-rule quantity demanded) was not
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recognized. The sample suggests an incorrect inference because the pricl
observations for high concentration were taken from the part of th
population distribution associated with low demand.

Good experimental technique can prevent most problems of this sor
The experimental analog of the antitrust study would vary the foc
variable (concentration) independently of the other controllable vari.i
ables, including most variables which could shift demand. Random-
ization would neutralize the effects of other nuisance variables on the

measured outcome (price). The result would be a good sample from
which valid inferences could be drawn.

... 'We have three recommendations. First, encourage your econometr-
!&!~Jcatiyinclined colleagues to work on the problem; it probably is im-

iportant in some of their favorite field data as well as in most laboratory
i,gata.Second, include appropriate caveats when you report formal sta-
~tlsticaltests. For example, in an ABA crossover design, learning and
!gr6hpeffects may tend to drive the observed A mean toward the ob-
SeryedB mean, so conventional confidence levels then would represent

'. lower bound on the true confidence level associated with your hy-
pthesis test. In the bid/ask example given previously, the conventional
onfidence level for rejecting the null hypothesis (equal bid/ask ratios
~ross the experiments) would represent an upper bound on the true
:(},pfide~celevel. We recommend that you think through the uncon-

'itrollednonrandomized nuisances in your experiment and, if you consider
"\~themsignificant, tell your readers the direction of probable bias in formal
.~~~tstatistics.

roQurthird recommendation is to extend your randomization scheme
~todifferent subject pools, different laboratories, and so on, whenever

~kasible. The folk wisdom among experimental economists is that an
I~~pirical regularity becomes credible when it is replicated with three

,,\~ifferentgroups of subjects, preferably from different pools and in
,gifferent laboratories. While we see no magic in the number 3, we
~;enc:lorseany procedures that broaden your sample of the population
'distribution.

Despite the tremendous advantages laboratory techniques pr
vide in creating good samples, some serious problems remain, arisin,
particularly from learning effects and group effects. Human subject

\

usually learn from experience. The action a subject takes in a particula
trial of an experiment may be affected by her experience in previou

\

trials. To the extent that this sort of learning affects your measure,
outcomes, your sample is not random. Specifically, the trials in a singI
experimental session are not independent.

Group effects can also produce samples drawn disproportionatel
from a small subset of the population distribution. For example, in twe
recent double-auction market sessions with inexperienced subjects, tll'
group of subjects in one session consistently produced more bids an
fewer asks than the outwardly identical group in the other session.

In principle, the proper way to deal with these problems is to chaj
acterize the nature of sample dependence and to adjust the statisH
accordingly. Beginning econometrics students learn how to deal wi
serially correlated time series data in just this way. Unfortunately lear
ing and group effects have not yet been characterized with any precisio
so no valid statistical correction presently is available.

Some experimentalists recently have dealt with the problem by adop
ing a very conservative definition of a trial - for example, count on
the last (or next-to-Iast) period in a market session. This may be t
only practical thing to do when learning effects are extreme, but we I

not recommend the practice in general. The approach ignores a lot °.
potentially informative data, and doesn't completely cure the probler
anyway-there may be group effects (or subject pool or protocol effects
that extend across sessions conducted in a given laboratory. Rassenf
Reynolds, and Smith (1988) (and some older unpublished work) de~
with the problem by assuming learning effects take the form of exp
nential decay toward a behavioral equilibrium. We regard this approa'
as promising but unproven.

~~ 7.3 Reference distributions and hypothesis tests
~ Hypothesis tests assess the probability that differences in ob- ,
i~wvedoutcomes across treatments are due to sampling error rather than
,~ueto differences in the underlying population distributions. Such an
(assessmentrequires a reference distribution, an empirical counterpart or
proxyfor the population distribution. You may construct a reference
~istribution directly from the samples themselves or from some external

,(ijatasource. Whether your source is internal or external, you mayor
:1I1aynot decide to impose a parametric structure on the reference dis-
';lclqution.Your choice of reference distribution largely determines your
':~hoiceof test statistic, and therefore the power and robustness of your~results.

7.3.1 Internal reference distributions

01 The most commonchoiceis an internal parametric distribution,
~:?~IlSiJallythe normal or the Student t. For example, suppose you wish to
't:



tp = (XA - XB)I (S (l/nA + 1/nB)1I2),

where the sample sizes are nA and nB, and the combined sample varl
is s\ has the Student t distribution with v = nA + nB - 2 degre
freedom.

If you designed your experiment so that A and B trials occ
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see whether subjects in a game theory experhnent are equally likel9
choose each of their two available pure strategies, x = 0 or 1. Youc

impose the parametric structure that the mean choice i is norma
distributed with unknown population mean f.1and known variance S2
where n is the sample size and S2 = k7~1(Xi - x)2/(n -1) is the us
variance estimate. Under the null hypothesis that the population IIi
is 0.5, the normalized sample mean z = n\l,(x - 0.5)/s has the j
normal distribution. An observed x = 0.6 from a sample of size n

36 with s = 0.2 yields z = 6(0.1)/0.2 = 3.0. Tables show that
probability of drawing an observation Izl ;::::3.0 from the unit not
distribution is only about 0.0026 (a two-tailed test) and the probabi
of drawing a z ;::::3.0 is about 0.0013 (a one-tailed test). It is bette
use the more powerful one-tailed test whenever you can specify
direction of the effect of treatment. Here you can confidently rejec!
hypothesis that the true population mean is 0.5 and that the obse
sample mean of 0.6 was due solely to sampling error. ..

Of course, the test just described assumes you know the popula
variance. In practice, you usually only know the sample estimate l
internal parametric reference distribution based on a normal popula
with unknown mean and unknown variance is called Student t, afte.

pseudonym adopted by the statistician William S. Gossett (1876-1
In a t-test you compare the same normalized sample mean n\l,(x --,
s to tabulated values for the Student t distribution with v = n
degrees of freedom. In the example with t = 3.0 and v = 35, we
one- and two-tailed probabilities of about 0.0025 and 0.005. The I
abilities are about twice as large as with the normal reference d
bution, but they are still small enough for you to reject confidentl
null hypothesis.

You can use more elaborate formulas but the same logic to tef

potheses of the form "treatment A promotes higher performance
treatment B." Assume that measured performance is normally di
uted with unknown mean f.1A(f.1B)under treatment A (B) and th,
unknown variance is the same under both treatments. Then the "p
t" statistic "

ed pairs, you can sharpen the test. Form the matched pair dif-
ces Xv = XA - XB, and compute their mean Xv and variance SV2.
form the "matched t" statistic, tm = n\l,(xv)/sv. For sufficiently
values of either tm or tp you can confidently reject the null hy-
sis that the A and B populations have the same distribution.

Ilumerical illustration may be in order. Recall the boys' shoes ex-
e Of Section 3.3, in which we want to know whether the new sole
bal A wears more slowly than the old material B. The data reported

et al. (1978, p. 100) give sample sizes of nA = nB = 10, sample
Ofmeasured wear of xA = 10.63, xB = 11.04 (so xD = -0.41),
= 2.43, and SD = 0.386. Then tp = (10.63 - 11.04/(2.43/5\1,) =
/1.09 = -0.38, while tm = (10\1,)(-0.41)/0.386 = -3.36. Tables
,Student t distribution give one-sided 1 percent critical values "Of
or the pooled t (a = 0.01, v = 18) and 2.82 for the matched pair
~,!0.01,v = 9). Since the absolute value of tm exceeds the critical
we conclude that the new material A wears significantly more

y did we pose "no effect" as the null hypothesis and the effect we
looking for as the alternative hypothesis? This is the customary
0 do it. Although you can find an occasional counterexample in
:rature (e.g., Schotter and Braunstein, 1981; De Long and Lang,
it usually is considered bad form to reach a conclusion by failing
ct the null hypothesis. Perhaps you failed to reject because the

telSrJarseor noisy, not because the null hypothesis really is correct.
readers will probably find it more satisfying if you reach your
,ion by rejecting a boring null hypothesis in favor of your desired
one-sided) alternative hypothesis, as in the example. Why use a

eht.~onfidence level? Custom again. Smaller confidence levels are
j since we are talking about the probability of mistakenly rejecting
null hypothesis. Economists often will settle for a 5 percent or
O.,percent confidence level when working with a small or noisy
1"but everyone prefers a 2 percent or 1 percent confidence level
e.data are reasonably good.
were we able to reject the null using the matched t but not the
t statistic in the example? Recall that the matched-pair design,

ing materials A and B randomly (to left and right or right and
oe soles, is intended to eliminate experimental error due to nuis-
~r,iables.The sharp decrease in SDrelative to s, and therefore the
.!nCI'eaSein tm relative to tp, demonstrates the success of the
~d-pairdesign in this example.
reference distributions discussed so far assume that the underlying
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populations are normally distributed. The Central Limit Theorem PI"
vides some justification for assuming that the mean ot a random sainp
is normally distributed, even when the observations themselves are h
drawn from a normally distributed population. Nevertheless, the n<
mality assumption remains unattractive in some cases. For example, t
period-by-period market efficiency data in Figure 7.3 certainly are Ii
even approximately normal. More extreme examples occur when yo
equilibrium occurs at a corner, so deviations can't even be symmetd
(See Chapter 9 for an example called Bernoulli-ch~ice experiments.)]
such cases you may prefer to use a free-form (or nonparametric) re
erence distribution in testing the null hypothesis that treatments A a

j B yield the same P

~
ulation distribution of outcomes. The idea is tl

1/ if the null hypothesi is true, then each assignment to A or B trials
the measured outco es is equally likely. The reference distribution th.
consists of all possible assignments of the data to the treatments, ait,
the test statistics give the probability that a difference between the
and B trials at least as extreme as observed could have come froJ
random assignment.

The Wilcoxon (or Mann-Whitney U) statistic is perhaps the ill
popular example of a nonparametric test. You (or preferably your COI
puter programs) rank-order the data from lowest measured efficien
to highest, keeping track of whether each trial was an A or B treat~eJ
Then you sum the ranks S for the (say) A trials. The statistic S .~
known mean and variance under the null hypothesis of no differerr
effect when there are an equal number n of observations under th
and B treatments, so the distribution of the statistic T = mean/varian."
is approximately unit normal in large samples. Good statistical progr1iJ
can compute the exact probabilities (confidence levels) for any T-val
even in moderate-sized samples, and in samples of unequal sizes.
useful variation of this Wilcoxon test, explained on p. 226 of Conoy,
allows you to test the null hypothesis of equal variances instead of t
usual null hypothesis of equal means.

Another popular statistic, called the binomial or signs test, uses
nonparametric reference distribution which is especially useful f,
matched-pair data. You (or the computer programs) count the nUl1!I:J~
r of paired differences that are positive and the number w that.a
negative. Under the null hypothesis that positive and negative diff,'
ences are equally likely, r has a binomial distribution with meal1,~O"
and variance n(0.5)(1 - 0.5), where n = r + w. A little algebra 1~

shows that normalized sample mean is z = (r - w)/(r + W)I\J
statisticis approximatelyunit normal in large samples;its exactbino

"mtion can be calculated precisely in small samples. (It is customary
aU samples to subtract the "continuity correction" 0.5 from the

ierator.) Once again, you can reject the null hypothesis of no dif-
.!1tialeffect in favor of the hypothesis that A leads to larger obser-
9ns than B if z is sufficiently large.
, ,eWilcoxon test is computationally simple and the binomial test is

simpler. But the Wilcoxon test keeps track only of ordinal rela-
lips and ignores quantitative sample information, and the binomial
gnores all sample information except the signs of the matched-pair
rences. Ignoring information reduces power of the test. In the pres-

era of cheap computing power it is worth considering nonparametric
edure,tSthat are computationally demanding but use all sample in-
!ation. The prime example is called the bootstrap. To illustrate,
ose your data consists of five matched pairs (xAi' XBi), i = 1,...,
onstruct an internal reference distribution of hypothetical data by
19 all permutations of the actual data. Thus you have 25 = 32

i(ltheticalsets of matched pairs, one of which is the actual data. For
p,h.ypothetical data set h, compute the difference of means x~ -
1hese thirty-two differences form the reference distribution for the
tal difference XA - XB' The fraction of the hypothetical differences
t,exceed the actual difference is the confidence level with which you

~ject the null hypothesis of no difference in favor of the alternative

~

thesisthat XA> XB'

pu can also bootstrap unmatched data. Given n A-observations and
-observations, there are (n+m)!/(n!m!) hypothetical assignments of
,~,m actual observations to the two treatment levels with n assigned

. and m to B. Under the null hypothesis of no effect, the set of
~i>otheticalA-means (B-means) defines a reference distribution for the

,obs~rvedA-mean (B-mean). (See Box et aI., 1978, p. 97, for a numerical
';~l11ple.)The bootstrap reference distribution converges to the t-

~jslribution as the sample size increases, but gives more accurate con-
iijdencelevels in small samples.

I ..

7.3.2 External reference distributions
Sometimes theory prescribes a specific reference distribution.

xample, you may conduct a k player game experiment where the
, function has a unique mixed-strategy Nash equilibrium PI>. . . ,
enyouprobablywant to test the hypothesisthat observed strategy
:H.desnl, . . . , nk represent N = nl + . . . + nk independent draws
,hereference distribution PI' . . . , Pk - that is, that your subjects

ay the Nash-equilibriumstrategy. A standard test is to compute
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the normalized sum of squared deviations '[.here are several general-purpose test statistics that compare an em-
ita.l distribution to a reference distribution. The Kolmogorov-
irnoff statistic measures the maximum distance between the two cu-
.lativedistribution functions; you can reject the null hypothesis that
:underlying population distributions are the same for sufficiently large
ues of the test statistic (Conover, ch. 6).
'he tests mentioned so far deal only with a single treatment variable.
pose your experiment features several treatment variables and you
satisfied with 11(multivariate) normal reference distribution. Then
can use the classical analysis of variance (ANOV A) procedures.

OVA allocates the variance in your data to each treatment variable
to {esidual variance. Appropriate variance ratios have the F-
ibution (discovered by R. A. Fisher, of course) under the null

othesis that the treatment variable has no effect. Thus, you can get
os for each treatment variable and compare them all to tabulated

.ical values of the F-distribution to determine which of your treatment
ts are significant. For details see any statistics text used by social
tists other than economists.

)~teconomists are more familiar with multiple regression than with
".~"OVA. Fortunately, you can get equivalent test statistics from mul-

Ile regression because ANOV A is a special case of the general linear
. 1(seeKirk, 1982,ch. 5). The regressionfor two-leveltreatment
I?lesis simple. Just define a 0-1 dummy variable for each treatment

able, and regress your data on a constant and the dummies. The
mated coefficient for each dummy is the mean effect of the corre-

i§p~l1dingtreatment, and its t-statistic is the standard t test statistic for
" Ju!l hypothesis that the treatment variable has no effect. If your

n kept the treatment variables orthogonal, then these t tests are
ependent and the results will not be affected when you omit or include
ler treatment variables in the regression.

';Thediscussions in this section focus on hypothesis testing for treat-
!m~ntvariables. The ideas apply equally well to comparing alternative
@:gdels,say models A and B. Let XAi and XBibe the forecast errors of

. twomodels for predicting observation i. Then you can use all the
ehed-pair tests as well as the more general tests to try to reject the
.hypothesis that the A-errors have the same distribution as the B-

r~?rs.
!t\.linal remark on statistical technique. This chapter has emphasized

,ie
,

a
,

l hY
,

pothesis testing and estimation because these are widely used
,conomistsand better suited to experimental data than to happen-
e,data. You should also be aware that there are numerous Bayesian
'ques. Roughly speaking, these techniques summarize the empir-

(~ - Pi)2
C = L N .

i Pi

It turns out that C has the Chi-squared distribution with k - 1 degre~
of freedom, so you locate your computed value in a standard tabletl
determine the confidence with which you can reject the null hypothesis

The origin of external reference distributions can be empirical rathe
than theoretical. Suppose, for example, you run experiments paral!!
to the extensive published work of Professor Jones. Using her publis
data (request raw data from her directly if the published data are
adequate), you can estimate the parameters of an appropriate dis
bution (e.g., normal or binomial) and use that fitted distribution as yo
reference distribution. Then go ,ahead and see if you can reject the u.su
sort of null hypothesis-for example, that the mean of your data is
same as the mean of her data (the reference mean). Alternatively,

your software permits, you can use the exact empirical distribution~.
her data as your reference distribution. Then you can run the Us\
nonparametric tests, such as the Wilcoxon and the bootstrap, to"
whether you can reject the usual null hypothesis. Failure to reject tl
null hypothesis in this case is evidence that you successfully replicat
Professor Jones's results. ~

7.3.3 More statistical tests
The test statistics mentioned so far - the normalized sam

mean, the pooled t and matched t, the Wilcoxon T, the binomial z, a
the Chi-squared statistics - are not the only ones useful for hypothes
testing. To begin with, the Chi-squared statistic is handy even in t:
absence of a theoretical reference distribution. For example, you ma
want to see whether treatments such as instructions or feedback info
mation affect the strategy frequencies in your game-theory experimer
The standard approach is to write out a contingency table (colum
defined by treatments and rows by strategies) and calculate a.e
squared statistic analogous to C for the entire table; large values allq.
you to reject the null hypothesis that the treatment had no effect.

There are many other statistical tests associated with contingerl,'
tables. Perhaps the best known is Fisher's exact test. It is appropri
for contingency tables where both row totals and column total~
constrained by your design and/or by the nature of the task. See Chap
4 of Conover (1980) for a clear exposition.

105

J'



4. Search published literature and use your imagination to
effective graphical displays and summary statistics. Try out ~
eral possibilities before making your final choices. Pop'
worksheet software (Lotus, Quattro, Excel, Wingz, etc.)
well suited for this task.

5. Look for outliers and other irregularities in the data. Elimi
those due to measurement error, and think about poss'
causes of the correctly reported irregularities (and regulariti
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ical evidence by mapping prior beliefs (before exposure to the data) in
posterior beliefs (after digesting the data). Bayesian techniques gene
ally are more consistent with decision theory and eventually may replal
classical statistical techniques, but at present are not standardized f,

experimental (or even happenstance) data. Therefore we omit coverag'
and refer the interested reader to Leamer (1978) for a general positil
statement and to Boylan and EI-Gamal (1992) for a recent applicati
to experimental data.

skeptical colleagues find your conclusions obvious from your qual-
"y analysis, then you are ready to get on to your final write-up.
ally you will run some formal statistical tests to better understand
!your data have to say. If so,

7.4 Practical advice
Data analysis interacts with experimental design, and you sho

think through both before you start conducting your experiments. S
cifically,

6. Look for appropriate external reference distributions, arising
from theory or from existing data. If external reference distri-
butions are unavailable or insufficient, use standard parametric
and nonparametric internal reference distributions.

.,7. Conduct the relevant hypothesis tests or equivalent parameter
estimation procedures (regressions). Include a caveat if you
stispect your design hasn't fully controlled for or randomized
out group or learning effects.

1. Choose your laboratory protocols to reduce measurement er
- automate data capture where possible, build in redundaq
and so forth. In manual experiments, have two persons rec(
the data independently. See Section 6.11 for further suggestio

2. Choose your treatments to produce good samples. Pay spel
attention to possible learning effects and group effects, si
these nuisances are difficult to control or randomize. Remem
that fancy statistical procedures are a poor substitute for gl
samples.

3. Choose experimental designs that will allow you to employ
ficient statistics, such as designs that produce matched-pair d
or designs with orthogonal treatment variables.

r.s Application: First-price auctions
The practice of selling an object to the highest bidder in an

9n goes back to ancient times, but no satisfying theoretical analysis
lis practice appeared until Vickrey (1961). His approach was to
~late what is now known as independent private values: Each bidder
)",s her own value Viand regards the unknown values of the other
! bidders as if drawn independently from some specific distribution.
:ey then used what now is called Bayesian Nash equilibrium to
ct the bids and the outcome of an auction. Assuming that traders
~skneutral and that the specific distribution is uniform on an inter-

[0, v], Vickrey predicted that anyone with a value of Viwould bid
, = (n - 1)Vi In. This result applies to first price-sealed bid auctions
e-and-for-all bids are submitted privately and the highest bidder

s."hisbid price for the object) and some other outwardly different
!ions such as the Dutch auction (the first bidder to stop a declining
'~!:lock gets the object at the indicated price).
fftera gestation period of a decade or two, Vickrey's model spawned
rgebody of theoretical literature, surveyed in McAfee and McMillan

). Experimentalists quickly noticed that this theory had sharp pre-
.fisand important applications but was difficult to test in the field.
ing on Coppinger, Smith, and Titus (1980), the study by Cox,

erson, and Smith (1982) analyzes bidding behavior in first price and
:rauction institutions. The treatment variables also include the num-
n of bidders and the upper endpoint v on the uniform distribution
rivate values. For each subject, the authors separately regress the
bi on a constant and the values Vi' and they tabulate mean price

price variance. To compare the price data to theoretical predictions,

Once you have conducted your experiments and have gathered
data, you should begin with a qualitative data analysis. We recomm
that you
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the authors rely on a Kolmogorov-Smirnoff test; the only graph in t
paper illustrates the K-S test. They also use a binomial test to comp~
behavior across auction institutions. The authors conclude that the fir
price auction data are not consistent with the original Vickrey (191
model, which assumes risk-neutral bidders, but generally are consist
with extensions of the model that assume uniformly risk-averse subjec

Follow-up studies extend the environment and institutions in varia
ways. The most thorough report on first-price auction experiments'
Cox, Smith, and Walker (1988). In one short table they summarize t
outcomes of 690 auctions from;1-7previous experiments. The table se
ments the sample into 8 subsampl~s according to the number of bidde
and other design features (such as whether the session involved;
alternative auction institution in an ABA crossover design.) For e~'

subsample the summary statistics are the mean observed price and'
deviation from the Vickrey prediction. The table also reports th
statistic for the null hypothesis that the mean deviation is zero. The
is rejected in 7 of the 8 subsamples in favor of the alternative that PI
exceeds the Vickrey prediction, a result consistent with risk-averse b
ding.

The authors then pursue the risk-averse bidding hypothesis by
amining individual behavior. Relying on a Wilcoxon test to comp
each subject's bids to the Vickrey predictions, they reject risk-nen
bidding in favor of risk averse bidding for a majority of subjects. Grai
of the points (v" b,) for individual subjects suggest that subjects dif
in their apparent degree of risk aversion. To pursue this possibility,..
authors regress bids h, on a constant and value v, separately for e
subject, and tabulate the estimated slope coefficients and interce
They also graph cumulative distribution functions for the regressi
R2 and for F statistics across pairs of regressions. The results sup
the view that behavior differs significantly across subjects.

Preexisting theory did not consider heterogeneously risk-averse
ders, so the authors construct a Bayesian Nash equilibrium bid
model called CRRAM (for constant relative risk aversion model)
covers this case. They find that the existing data are generally consist
with CRRAM. Since the model was constructed to explain the exi~!
data, the authors conduct new experiments to test the model furt
CRRAM correctly predicts that tripling monetary rewards has no
nificant effect on the bid functions. It is less successful in predi<;
changes in bid functions when rewards are nonlinearly transfon
CRRAM also fails to account for nonzero intercepts in bid functio
the original data. In a final iteration of theory and experiment,
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hors construct modified versions of CRRAM which allow nonzero

rcepts. One version, called CRRAM*, is generally consistent with
existing data as well as with data from new experiments designed
st it.

urely this is an impressive body of scientific research. Nevertheless
is Under attack on two fronts. Skeptics can question whether the
pattures from Vickrey behavior really are significant and, if they are,
ether alternatives other than risk aversion have received adequate
.sideration. Harrison (1989) forcefully argues that departures from
krey behavior are negligible and therefore the dominance precept is
satisfied. To make his case, Harrison presents several diagrams

wing that unilateral deviations from the Vickrey bid function typically
tIt in rather small expected losses. He points out that the deviations
highly non-normal and so he relies mainly on nonparametric statis-
t.techniques. He finds that the (true, population) median expected
is very likely to be less than 8 cents per bid. Other critics disagree
I Harrison's emphasis on median losses and point out that even a
ust statistic may not capture key features of the data (i.e., a moderate
ber of large losses would not be detected by the median if there
enough small losses). Some critics argue that learning explanations
. improve on the risk-aversion explanations. Readers interested in
substantive issues raised by first price auction experiments should
the Kagel (1993) survey and the December 1992 American Eco-

Review interchange on Harrison (1989).
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8
ver it. Coverage decisions can be particularly difficult for experi-
al economists. Usually you will get some puzzling results in your
1laboratory sessions, so you conduct follow-up sessions. Often the
~sults create as many puzzles as they solve, so you conduct more
;~upsessions, creating new puzzles, and so on. The process even-
terminates, either because you resolve all the important puzzles

ore likely) because you run out of time, money, or patience. At
oint you may have far more material than you can fit into a single
[,but the scope of this material is probably too narrow for a pub-
ble book. Somehow you will have to select a subset of your material.
choosing which data to report you must balance two conflicting
ives. First, to keep your readers' attention and to aid their reten-
you want to focus on a single issue or a small set of closely related
s.:Therefore you want to select only the most directly relevant data.
n'd, you want to present an accurate and complete picture of your
t,~.In particular, you want to avoid selection biases.
lith(1990), taking a cue from Leamer (1983), warns that experi-
talists too are susceptible to selection biases in reporting their re-
,He argues forcefully in favor of treating the entire set of trials in
vestigation as a single experiment. If the designation of "experi-
"were reserved for various subsets of trials, he argues, investigators
t be tempted to report selectively from the trials they have con-
ed, with dysfunctional consequences for the discipline as a whole.
(ever, Roth acknowledges the other side to the argument by quoting
'xample of Robert Millikan and Felix Ehrenhaft from a report by
lational Academy of Science's Committee on the Conduct of Sci-
(1989). Ehrenhaft reported all his data and concluded, incorrectly,
lere is no lower limit on the magnitude of electrical charge found
ure. Millikan, on the other hand, used only what he regarded as
,!est"data sets to demonstrate the unitary charge of electron, and
on to win the Nobel Prize for this landmark discovery. .

ow should you resolve the data-selection dIlemma? We belie~e that
illyour budget and time constraints you should vary treatments and
icate sufficiently to obtain a reasonably broad base of valid data,
you should analyze all of it until you understand its main charac-
Mes.Then you should select the most relevant portion of the data
loser analysis, after satisfying yourself that your selection does not
'I$,the conclusions. In your written report you should briefly but
tlly describe your selection process and then devote most of your
;"tbanalyzing the data selected. That way your readers can judge
levance of your data for themselves, and know where to go for

You have thought through some important economic issue, found a
to examine it in the laboratory, d~signed an appropriate set of ex
ments, run them, and analyzed the data. You have learned a lot threj
the whole process, and it appears that the results may interest, e
surprise others. Time to kick back and congratulate yourself on a,
well done? Well, don't relax quite yet. You still have to present y
results to your peers. If your write-up is sloppy or confusing, all y
hard work probably will have no impact on others. If you report y
results effectively, you may help people change how they think al)
the issue. You already have had the personal satisfaction of learn
something new. Now by effectively communicating this learning to'
ers, you can amplify the social benefit of your work as well as
personal satisfaction.

This chapter offers suggestions on how to report the results of
experiments effectively. We emphasize the preparation of articles
academic journals, but most of the suggestions apply equally we!
seminar presentations, consulting reports, or book chapters. The
section discusses the scope of research you should try to cover in a sin
paper. Next we present customary ways of organizing the paper,
offer advice on polishing your prose, tables, and figures. The rest of
chapter discusses current standards for documenting your work
offers advice on how to schedule various stages of your project.
illustrate many of our points in a discussion of asset-market experime

8.1 Coverage
Every essayist, whether an economist, or journalist (or phy

for that matter) must decide what material to cover andatwhat
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ntation of data and results also requires careful exposition because
pically your data are new and in some respects unfamiliar to most of
mr readers.

;,Experimental economists generally deal with these expositional prob-
ms by modifying the basic organizational plan as follows.

'Thisoutline is for pedagogical purposes only. It is best to think about
outline and to look at the organization of good published articles

!it are relevant to your work. Then choose a tentative organization
110modify it in response to colleagues' comments that make sense to",.u.

8.3 Prose, tables, and figures
For reasons we do not fully understand, wordsmithing standards

m higher in economics than in most other experimental disciplines
4 as psychology and biology, and most economists spend a lot of
.epolishing their prose. Unless you don't care about publication, or
ess you are a gifted writer, you also will devote a large fraction of
fresearch time to prose polishing. Remember that if better writing
(esyour work accessible to even 10 percent more readers, the return

wellworth the investment. You should expect to rewrite your paper
veral times before you are done with it. It may help to ask yourself
e following questions as you work on your prose.

additional evidence. Our advice admittedly places a heavy burden ori
you, the experimentalist, but we think the burden is justified because.
the scientific validity of your results is at stake.

The decision regarding depth of coverage also must balance conflicting
needs. First again, you want to be brief and not tax your readers' patienc~
with dispensable details. But second, you want to be sufficiently coni~
plete so readers understand what you have done and how you reached
your conclusions. Many of your readers probably are not as familiar;
with your procedures as they are with standard econometric procedure~l)
for field data. Consequently, they may misinterpret what you did if you~'1

omit too many details. ~,

With some extra work, you can resolve this conflict satisfactorily. In.If'I
the text of your paper, try to convey the main features of your procedures
and omit most of the details. But in an appendix, write up your pro-"
cedures in sufficient detail that any competent experimentalist could"
fully replicate your work, and make the appendix available on request
In doing so, you will assist your fellow experimentalists, depersonalizl
the empirical basis of economics, and strengthen its scientific founda
tions. To drive the point home, we reprint the Econometrica guideline
in Appendix IV. These guidelines should generally be followed even'
you have no intention of submitting your work to that journal.

Part A

Part Bl

J?art B2

Part Cl

Part C2

8.2 Organization
Your experimental paper should be organized generally in t

same manner as otl).er empirical economics papers. In recent decades,
empirical papers in economics usually have the following organizational,;
plan: .

Part A Introduction. Statement of issues, background infot
mation, literature survey, overview of the paper ana,
results. "
Relevant theory. A brief summary often suffices.
Data and results.
Conclusions and discussion.

Part B
Part C
Part D

Experimentalists face some expositional issues that other empirica",.
economists usually can ignore. If you present theory before describing':
your laboratory environment, you are left to defend the gaps betwee~
the two. You may prefer to describe your laboratory environment, i~"

stitutions, and treatments first, before specifyingthe theoretical model§1.
that may be relevant to understanding the outcomes of such economies;.
This is especially useful if the relevant theory is poorly developed. Pre~i;

Introduction. Statement of issues, background in-
formation, literature survey (may go elsewhere),
overview of the paper and results.
Laboratory procedures. Basic environment and
institutions, treatments, design, subject pool, etc.
Relevant theory. Can precede Bl if relevance is
clear from introduction. May conclude with a list
of testable hypotheses.
Descriptive data analysis. Graphs and summary
statistics.

Inferential data analysis. Hypothesis tests or the
like. May be omitted if conclusions are evident
in the descriptive data analysis.
Conclusions and discussion.
Instructions to subjects, raw data, mathematical
derivations, procedural and statistical details, etc.
To be published if the editors desire, otherwise
available on request.



Did I leave out any information my readers need to underst
this sentence or result?

Have I repeated myself too often on this point?
Is there a way to rearrange the paragraphs or sentences to m

the material easier to absorb?
Can I recast this sentence to make its meaning clearer on'l

reading? Did I slow the reader down by making gratuit,
backward or forward references (e.g., "See Section 8.4 b
low")?

Is there a more apt or vivid way to make this point?

8.5 Project management 115Reporting your results

sponsibility of documenting your work so that it is replicable.
your documentation and other necessary resources such as access
jects or special software, another competent experimentalist
be able to conduct an experiment that you would regard as

ially the same as your own. Further, she should be able to process
'aw data in the same way you did.
meet this replicability standard, four types of documentation are
sary:

Good writing is an art. It does not come naturally to most economi
(ourselves included), but we all improve with practice. You can incre
your rate of improvement by reading Strunk and White (1979),
Closkey (1985,1987), and Hamermesh (1992), and by taking their adv.
to heart.' i

Many readers will skim your article, pausing to look more closely
diagrams, graphs, and tables. Even careful readers usually depend h~~
ily on figures and tables. Therefore the success of your paper depen
disproportionately on the quality of your figures and tables, and y'
can get a high payoff from polishing them so they are easy to understati
As you polish, ask yourself the same kind of questions as for your pro:
For example, do lines 5 and 6 of this table convey any useful informatio
Would a separate diagram help clarify this fundamental point? Do
have too many lines in this graph?

The Journal of Finance and a few other academic journals requt
that each table and figure be completely self-contained, suitable"fl
reproduction in a textbook without your surrounding prose. In our vi~
this standard is a bit extreme, but the general idea is a good one. Ai
yourself: Will my readers remember the meaning of this acronym us
as a column head? When in doubt, make the column heading se
explanatory or define it in a caption or note. And so forth. Good pti
lished work on related issues is the best source of ideas for improvi
your tables and figures. You may find Tufte (1983, 1990) usefu1
general references.

Subjects Maintain printed or electronic copies of instructions
to subjects. Also, maintain records of how, when, and where

, you recruited and trained subjects. Your institution probably
also requires you to maintain records of cash payments to
subjects.

Laboratoryenvironments Maintain copies of software and spe-
cial materials, and descriptions (at least) of hardware you
used, in sufficient detail that your laboratory environments
could be recreated.

Raw data Keep electronic or hard copies of all your valid data.
Include records of time and circumstance, such as a lab log.

Data processing Keep records of your specific procedures,
such as the SAS (a popular statistical software) procedures
used to produce Table 3 of your paper.

n you have finished your project, you should consider sending
ata to a public archive. Some funding agencies, such as the Na-
Science Foundation, require this. Many use the U.S. national
e of social science data maintained by the Inter-university Con-
IIifor Political and Social Science Research (ICPSR). The mailing

ess is PO Box 1248, Ann Arbor, Michigan 48106-1248.

8.4 Documentation and replicability
Philosophers of science assign a central role to replicabi\jty~

More specifically, in the opening paragraphs of the New Palgra:'
Dictionary entry on experimental economics, Smith (1987) explains'
progress in our discipline depends on experimentalists being abl
replicate one anothers' work. As an experimental economist, you){

8.5 Project management
Unless you have previous experience, you probably feel a bit

irt~in about how to combine planning, experimentation, data anal-
,oral and written presentations, and documentation. You probably
begin and end these tasks more or less in the order listed, but there

,~",..."beconsiderable overlap. We offer our advice on project manage-
It in the form of answers to several questions that may be on your'°
q.

len should I begin presenting my results? As soon as you have a
nablybroad set of validdata (i.e., without important glitches),you

. ,Id begin to analyze it, and when you obtain an interesting result
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you should think about presenting it. Initial oral presentations ust!
are best made to an informal and friendly audience at the time you
finishing the first complete draft of your paper. Don't wait until
have highly polished results because then you would miss the opportu
to act on your colleagues' good suggestions.

Should I write up my results in one long paper or several sho,
papers? Both of us tend to err on the side of putting too much mate
into a single paper, but we've certainly seen the opposite error as ,
Remember that the scope of a paper is defined by the issues addres
not the number of experiments. Basically, it is a judgment call. If
are unsure, ask your colleagues for advice.

When should I submit a paper for publication? Journal standard,(
experimental economics are the same for other kinds of empirical
nomics. Read Hamermesh (1992) and consult trusted colleagues if
are unsure whether your paper is ready for submission.

When should I make my documentation available to other exp
mentalists? The current custom is to offer all documentation exceptr

data on request as soon as you begin to circulate a draft or wor~!
paper version of your results. There is no consensus as yet on raw da
some experimentalists have delayed sending it for as long as two y'e:
from the time of initial publication of results. Others honor requests
raw data before publishing anything. You incurred the costs of produci
the data so you deserve the right of first access. On the other handl~~
full social benefits will be realized only when the data are available')
cross validation, new tests by other investigators, and student traini!
We hope that it becomes customary to release data upon accepta
for publication or within a year of completion of the main experime
whichever comes first.

8.6 Application: Asset-market experiments
Field data are exceptionally plentiful and accurate for as

markets. Every day there is a new mountain of precise price data
stocks, bonds, commodity futures, options, and foreign-currencym
kets. Despite their impressive mass and precision, the field data ha
some weaknesses. Trading volume data are reasonably good, but:
curate allocation data are much harder to obtain. More important, ti:
ers' preferences, endowments, and information are not observabl, .
field settings. Hence you can't directly measure allocational efficiy,
or the fundamental value (i.e., the value incorporating and aggregat
all current information) for an asset market in the field. You can meas!
price volatility for field assets, but you can't determine how much 0

ient response to new information and how much of it is excessive
nefficient.

.boratory asset market data have complementary strengths and
nesses. Budgetary considerations dictate that only a few traders
articipate in laboratory markets over relatively short periods of
However, traders' preferences and information can be controlled,

u can measure efficiency directly. If you are interested in the effects
!Jrading institutions, you can systematically vary them in the lab-

y. Experimental studies of asset markets were initiated to examine
ilities of markets to disseminate information and to allocate re-
s efficiently when the initial distribution of information is asym-
; We shall describe only the main features of a few studies here.
detailed survey, see Sunder (1993).
tt and Sunder (1982) initially designed their experiment in 1980 to
how large a fraction of traders must have information in order for
arket to behave as if all traders are informed. The authors expected

esults to show that, as the number of traders who have information
~outset increases, the allocative efficiency of the market will rise.
sort of quantitative link between initial information dissemination
larket efficiency cannot be confirmed from field data because the
rcher cannot know the information conditions of the individual
rs.
,~t..andSunder (1982) made important abstractions and borrowed

ill the prior experimental studies in creating their laboratory model
:thestockmarket for the purpose of testing the efficiencyhypothesis.
tst~ stocks have indefinite lives and pay periodic dividends whose

,amountsare uncertain. They abstracted away from indefinite lives to a.

~.

le dividend because multiperiod lives were not critical to the prin-
.of information dissemination in markets. Second, exploration of
sues of information efficiency needed uncertainty of payments, and

:y.borrowed the design of uncertainty in their first market session
\1!,°mPlott and Wilde's (1982) experiment on professional diagnosis

~~gusself-diagnosis. When this information structure proved to be too
. implicated,they simplified it in the subsequent market sessions. Third,

j~fi,experimental model of the stock market had to permit each partic-
. lilt to be a buyer as well as a seller. This feature was borrowed from

l,fsythe,Palfrey, and Plott (1982). Each trader was given an initial

~~wment of two assets and a large working capital loan. The working
ltalloan enabled each trader to buy and sell freely within a trading
)d, though the net short sale within a period had been restricted to
nitial endowment of two assets in order to limit the risk of subjects'
ruptcy. Fourth, the per unit dividends were specified so as to hold

\
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the rational-expectations equilibrium price to a constant level wi
each period. Fifth, dividends were varied across the three classe
traders in order to generate gains from trading and to enable a mea
of allocative efficiency of the market to be defined and examined.,
nally, information about the realized state of the world that determi
the dividends was withheld from some traders in order to examil
these traders are able to learn the information through the market
cess itself.

Thus the focus variable in Plott and Sunder's (1982) experime
information (i.e., prior notification of the realized state) with t
levels: none, insiders (e.g., two of the four traders of each typ
notified), and all. Nuisance treatment variables include the state.
abilities and the state-contingent valuation schedules, and wheth
not the number and identities of insiders are announced. Basicall
design is randomized block, each block consisting of two to nine tr
periods. The results supported the rational-expectations (RE) m
as prices and allocations converged to efficient levels and insiders' e
profits became insignificant.

While Plott and Sunder reported the results of all five market ses
they also selectively used information from their early sessions to
their exploration. Their results can be used to illustrate the critic~
controversial nature of the issues discussed in Section 8.1. Only on
of a total of nine private-information periods of the first two m
sessions betray any hint of information dissemination. Using the,!
tical averages, the null hypothesis of no-dissemination would not
been rejected. Yet, the behavior of market in period 9 of ma]
suggested that, under appropriate conditions, such dissemination
occur. The authors then conducted a third market session with
rienced traders that yielded firm evidence in favor of informatio .
semination. Millikan's use of his "best data" can be an excellent ex
to follow if you apprise your reader of all the facts of the case.

Clear evidence of market efficiency from the third market sessi
the authors to seek replication in a fourth session with a fresh
subjects. Having replicated, they wrote the first draft of the pape
presented the results at two workshops. Comments received at the
shops led to a fifth market session in which the number of state~:,
world was increased to three. Design, conduct, and presentation
experiment took only six weeks, much less than the authors' other

Do the striking efficiency results stand up in more difficult ert
ments? Having observed dissemination of information from l'
formed to the uninformed, Plott and Sunder (1988) design
experiment to examine if, and under what conditions, the mark~

the more difficult task of aggregating diverse information in
ion of individual traders. Can markets behave as if everybody

.u the information? They took the three-state design of the fifth
n of their 1982paper and altered the information structure. If state
:realized, half the traders were told that the state is "Not Y" while
her half were told that it was "Not z." Would the market behave
very trader knows for sure that the state is X? Results of their
sessions revealed the answer to be negative, and shifted the focus
:atch to finding market environments in which such aggregation
cur. The subsequent sessions revealed that information is aggre-
in markets that fulfill either of the two conditions: (1) homogenous
,:~n~es(same dividend distribution for all traders) or (2) trading a
securities that span the state space. In further work, Forsythe and
olm (1990) found that even in incomplete markets with heter-
s preferences, additional trading experience can lead to infor-
aggregation.
~etheir 1982 paper, market sessions for Plott and Sunder (1988)

onducted over a span of three years at geographically dispersed
fis. The first market session was found to aggregate information
ecause, it was later discovered, one subject was inadvertently
information she should not have had. This session was excluded

y published work. The working versions of both papers included
~te raw data appendixes which were later analyzed in published
~.by other authors.
I~land and Friedman (1987) report the first computerized asset-
f,.experiments. (See Williams, 1980, and Anderson et aI., 1989,
idence that computerized asset markets are more difficult than
Their environments had several dimensions of additional com-
including news (i.e., information regarding the realized state

,g during the trading period), and possibly heterogeneous states.
pe with the large number of potentially important nuisances they
yed a 24half-factorial design with the fourth variable confounded
l\( three-way interaction of the other variables. In this and later
the authors found that the rational-expectations model continues
erform alternative simple models in most dimensions, although
:esome interesting anomalies. Two follow-up papers by the same
examine the interaction of an information market with the asset

t, and examine an empirically oriented model of partial infor-
\."aggregation. After several rejections and numerous revisions,
pers eventually were published in 1991 and 1992.
h, Suchanek, and Williams (1988) draw quite different conclu-
om a different environment examined in dozens of experimental
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sessions over several years. They report frequent large bubbles ~

sodes where the asset price rises far above the fundamental vahii
an extended period of time, usually ending in a sudden price eras
or below the fundamental value. The environment differs from r

previous asset-market studies in at least two respects: They genei
have only one trader type (so there are no induced gains from tra
and they use long-lived assets with little stationary repetition. Des
some useful follow-up work by Porter and Smith (1990) that sy~t,
atically tests several hypotheses regarding bubble formation, it is
yet clear which design differences are responsible for the ineffic
prices. Follow-up work continues in several laboratories around.
United States.

Sthe experimental tradition been so late to emerge in economics?
pter 1 we argued that a discipline becomes experimental when

tbrs develop techniques for conducting relevant experiments.
er, development of experimental technology is only a part of the
<lraises as many questions as it answers. Why were innovators
tlevelop new techniques in the 1960s and 70s and not before?
. mainstream economists begin to acknowledge the relevance of
'.ry experimentsin the 1980sand not even later? To answer such
iswe must look at the development of the economics discipline
ole.

P,l~chapter we offer a brief historical account of the emergence
experimental tradition in economics, and our own tentative ex-

ii2n of its timing. We are not historians and do not try to be
l~!e and definitive; our goals are more modest. Now that you are
iar with the techniques of experimental economics, you should
r,~tandhow they arose and how they relate to other experimental
.(jns in the social sciences. Our historical account may provide
perspectives. You may also find the story of some interest in its
ght.

~begin with some ideas about the evolution of scientific thought,
ly drawn from Kuhn (1970) and Lakatos (1978), and apply these
tp economic theory. The historical narrative in the next several
l~jS based on Smith (1991) as well as on personal conversations
rrespondence with Charles Plott and several of the other people
e.g. We trace the development of experimental economics up to
980s when it found increasing acceptance into mainstream eco-
. After a quick geographical sketch of activity in experimental
ics in the early 1990s, we discuss the divergence of the discipline
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