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GAME THEORY1S ABOUT WHAT HAPPENS when people—or genes, or nations
interact. Here are some examples: Tennis players deciding whether fo serv

totheteft-or ..:FNTH Q%T&%%%Wﬁﬂﬂg%mmﬂwﬁla
counted price on pastries just before it closes; employees deciding how hard
to work when the boss is away; an Arab rug seller deciding how quickly to
lower his price when haggling with a tourist; rival drug firms investing in a
race to reach patent; an e-commerce auction company learning which fea
tures to add to its website by trial and error; real estate developers guessing
when a downwodden urban neighborhood will spring back to life; San Fran:
cisco comimuters deciding which route to work will be quickest when the-Ba
Bridge is closed; Lamelara men in Indonesia deciding whether to join the
day’s whale hunt, and how to divide the whale if they catch one; airline
workers hustling to get a plane away from the gate on time; MBAs decid
ing what their degree will signal to prospective employers (and whether;
quitting after the first year of their two-year program to join a dot-com
startup signals guts or stupidity); a man framing a memento from when..
he first met his wife, as a gift on their first official date a year later (they're.
happily married now!); and people bidding for art or oil leases, or for knick
knacks on eBay. These examples illustrate, respectively, ultimatum game
(bakery, Chapter 2), gift exchange {employees, Chapter 2), mixed equilib-
rium (tennis, Chapter 3), Tunisian bazaar bargaining (rug seller, Chapter-
4}, patent race games (patents, Chapter 5}, learning (e-commerce, Chap--
ter 6), stag hunt games (whalers, Chapter 7), weak-link games (airlines,.
Chapter 7), orderstatistic games (developers, Chapter 7), signaling (MBAs
and romance, Chapter 8}, auctions (bidding, Chapter 9,
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In all of these sitiations, a person (or firm) must anticipate what oth-
ers will do and what others will infer from the person’s own actions. A
game is a mathematical x-ray of the crucial features of these situations.
A game consis(s of the “strategies” each of several “players” have, with pre-
cise rules for the order in which players choose strategies, the information
they have when they choose; and how they rate the desirability {or “util-
ity") of resulting outcomes. An appendix to this chapter describes the basic
mathematics of game theory and gives some references for further reading.

Game theory has a very clear paternity. Many of its main features were
introduced by von Neumann and Morgenstern in 1944 (following earlier
work in the 1920s by von Neumann, Borel, and Zermelo). A few years later,
John Nash proposed a “solution” te the problem of how rational players
would play, now called Nash equilibrium. Nash’s idea, based on the idea of
equilibrium in a physical system, was that players would adjust their strategies
until no player could benefit from changing. Ali players are then choosing
strategies thatare best (utility-maximizing) responses to all the other players’
strategies. Important steps in the 1960s were the realization that behavior
in repeated sequences of one-shot games could differ substantially from
behavior in one-shot games, and theories in which a player can have private
information about her values (or “type”), provided all players know the
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impatient the tourist is but isn’t sure how much the tourist likes a particular
rug. Then game theory tells you exactly what price the seller should start out
at, and exactly how quickly he should cui the price as the tourist hems mn.a
haws. In experimental re-creations of this kind of rug-selling, the theory s :
halfright and half-wrong: it’s wrong about the opening prices ma:mam state, .
but the rate at which experimental sellers drop their prices over time 1S
amazingly close to the rate that game theory predicts (see Chapter 4.

It is important to distinguish games from game theory. Games are a tax-
onomy of strategic situations, a rough equivalent for social mnmmﬁno of the
periadic table of elements in chemistry. Analytical game theory is a math- -
ematical derivation of what players with different cognitive capabilities are -
likely to do in games. Game theory is often highly mathematical (which vmm :
limited its spread outside economics) and is usually based on Introspection.
and guesses rather than careful observation of how people actually play in
games. This book aims to correct the imbalance of theory and facts by de-
scribing hundreds of experiments in which people interact strategically. Hr‘n
results are used to create behavioral game theory. Behavioral game theory is
about what players actually do. It expands analytical theory by adding emo-
tion, mistakes, limited foresight, doubts about how smart others are, and
learning to analytical game theory {(Colman, in press, gives a more philo-
m_JH...TﬁH.\..._ ﬁ_n.._anj_o.\,»ma:nv Rehavinral game q.—._HUQ._..u_.___ is one branch of behavioral

—P : e-types-might-be—In1904Nash, John Harsanyi;

and Reinhard Selten (an active experimenter) shared the Nobel Prize in
Economic Science for their pathbreaking contributions.

In the past fifty years, game theory has gradually become a standard
language in economics and is increasingly used in other social sciences (and
in biology). In economics, game theory is used to analyze behavior of firms
that worry about what their competitors will do.! Game theory is also good
for understanding how workers behave in firms (such as the reaction of
CEQs or salespeople to incentive contracts), the spread of social conventions
such as language and fashion, and which genes or cultural practices will
spread.

The power of game theory is its generality and mathematical precision.
The same basic ideas are used to analyze all the games—tennis, bargaining
for rugs, romance, whale-hunting—described in the first paragraph of this
chapter, Game theory is also boldly precise. Suppose an Arab rug seller
can always buy more rugs cheaply, an interested tourist values the rugs at
somewhere between $10 and $1000, and the seller has a good idea of how

! Game theory fills the conceptual gap between a single monopoly, which need not worry about what
other firms and consumers will do because it has monopoly power, and “perfect competition,” in which
no fivm is big enough for competitors to worry about. Garne theory is used to study the intermediate case,
“oligopoly,” in whicl (here are few enough firms that each company should anticipate what the others
will do. )

5 . -
economics, an approach to economics which uses psychological regularity

to suggest ways to weaken rationality assumptions and extend theory (see
Camerer and Loewenstein, 2003}.

Because the language of game theory is both rich and crisp, it could
unify many parts of sacial science. For example, trust is studied by m_.oﬂm_
psychologists, sociologists, philosophers, economists interested in economic
development, and others. But what is trust? This slippery concept can be
precisely defined in a game: Would you lend money to somebody who
doesn't have to pay you back, but might feel morally obliged to do so? Ifyou |
would, you trust her. If she pays you back, she is trustworthy. This definition
gives 2 way to measure trust, and has been used in experiments in many
places (including Bulgaria, South Africa, and Kenya; see Chapter 3).

The spread of game theory outside of economics has suffered, I believe,
from the misconception that you need to know a lot of fancy math: to apply -
it, and from the fact that most predictions of analytical game theory are not -
well grounded in observation. The need for empirical regularity to inform -

*To be precise, this book is only about ‘mencooperative” game theory—thatis, when players cannotmake -
binding agreements about what to do, so they must guess what others will do. Cooperative game theoryisa =
complementary branch of game theory which deals with how plagers divide the spoils after they have made |
binding agreements.
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game theory has been :wnowauoa mew times. In the opening pages of their
serninal hook, von Neumann and Morgenstern (1944, p. 4) wrote:

the empirical background of economic science is definitely inadequate.
Our knowledge of the relevant facts of economics is incomparably
smaller than that commanded in physics at the time when mathemati-
zation of that subject was achieved. . . . It would have been absurd in
physics to expect Kepler and Newton without Tycho Brahe—and there
is no reason to hope for an easier development in economics.

This book is focused on experiments as empirical Wmnrmnocﬂm Game
theory has also been tested using data that naturally occur in field settings
(particularly in clearly structured sjtuations such as auctions). But experi-
mental control is particularly useful because game theory predictions often
depend sensitively on the choices players have, how they value outcomes,
what they know, the order in which they move, and so forth. As Crawford
{1897, p. 207) explains:

Behavior in games is notoriously sensitive to details of the environment,
so that strategic models carry a heavy informational burden, which is

often compounded in the field by an inability to observe all relevant
variables. Important advances in experimental technique over the past
three decades allow a control that often gives experiments a decisive
advanfage in identifying the relationship between behavior and envi-
ronment. . . , For many questions, [experimental data are] the most
important source of empirical information we have, and {they are] un-
likely to be less reliable than casual empiricism or introspection.

Of course, it is important to ask how well the results of experiments
with (mostly) college students playing for a couple of hours for modest fi-
nancial stakes generalize to workers in firms, companies creating corporate
strategy, diplomats negotiating, and so forth. But these doubts about gen-
eralizability are a2 demand for more elaborate experiments, not a dismissal
of the experimental method per se. Experimenters have studied a few di-
mensions of generalizability—particularly the effects of playing for more
money, which are usually small. But more ambitious experiments with teams
of players, complex environments, communication, and overlapping gener-
ations® would enhance generalizability further, and people should do more
of them,

33ee Scliotter and .mom.__n.. (2000},
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1.1 What Is Game Theory Good For?

Is game theory meant to predict what people do, to give them advice, or
what? The theorist’s answer is that game theory is none of the above~—it is
simply “analytical,” a body of answers to mathematical guestions about what
players with various degrees of rationality will do. If people don'’t play the
way theory says, their behavior has not proved the mathematics wrong, any
more than finding that cashiers sometimes give the wrong change disproves
arithmetic,

In practice, however, the taols of analytical game theory are used to
predict, and also to explain (or “postdict™) and prescribe. Auctions are a
good exanmple of all three uses of game theory. Based on precise assumptions
about the rules of the auction and the way in which bidders value an object,
such as an oil lease or a painting, auction theory then derives how much
rational bidders will pay.

Theory can help explain why some types of auction are more common
than others. For example, in “second-price” or Vickrey auctions the high
bidder buys the object being auctioned at a price equal to the secondhighest
bid. Under some conditions these auctions should, in theory, raise more
revenue for sellers @._mb traditional mnm_%ﬁnm mcnao:m in which the r_mw

Reilly, 2000). Why? Omﬁm theory offers an explanation: Since the r_mw
bidder pays a price other than what she bid in a second-price auction, such
auctions are vulnerable to manipulation by the seller {who can sneak in an
artificial bid to force the high bidder (o pay more).

How well does auction theory predict? Tests with field data are prob-
lematic: Because bidders’ valuations are usually hidden, it is difficult to
tell whether they are bidding optimally, although some. predictions can be
tested. Fortunately, there are many careful experiments (see Kagel, 1995;
Kagel and Levin, in press). The resnits of these experiments are mixed. In
private-value auctions in which each player has her own personal value for
the object (and doesn’t care how much others value it}, people bid remark-
ably close to the amounts they are predicted to, even when the function
mapping values into bids is nonlinear and counterintuitive 8

In common-value auctions the value of the object is essentially the
same for everyone, but is uncertain. Bidding for leases on oil tracts is an
example—different oil companies would all value the oil in the same way
but aren’t sure how much oil is there. In these auctions players who are most
optimistic about the value of the object tend to bid the highest and win,

4 In some domains of social stienee, these kinds of game-theoretic “storles” about how an institwtion or
event unfolded are called “analytical narratives” and are proving increasingly popular (Bates et al., 1998).
"See Ghen and Plott (1998) and the sealed-bid mechanism results in Chapter 4.
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The problem is that, if you win, it means you were much more optimistic
than any other bidder and probably paid more than the ohject is worth,
a possibility called the “winner’s curse.” Analytical game theory assumes
rational bidders will anticipate the winner's curse and bid very conservatively
to avoid it, Experiments show that players do not anticipate the winner’s
curse, 50 winning bidders generally pay more than they should.

Perhaps the most important modern use of auction theory is to pre-
scribe how to bid in an auction, or how to design an auction. The shin-
ing trivmphs of moedern auction theory are recent auctions of airwaves to
telecommunications companies. In several auctions in different countries,
regulatory agencies decided to put airwave spectrum up for auction. An auc-
tion raises government revenue and, ideally, ensures that a public resource
ends up in the hands of the firms that are best able to create value from
it, In most countries, the auctions were designed in collaborations among
theorists and experimental “testbedding” that helped detect unanticipated
weaknesses in proposed designs (like using a wind tunnel to test the design
of an airplane wing, or a “tow-tank” pocl to see which ship designs sink and
which fleat}). The designs that emerged were not exactly copied from books
on auction theory. Instead, theorists spent a lot of time pointing out how
motivated bidders could exploit loopholes in designs proposed by lawyers
and regulators, and using the results of testbedding to improve designs. Anc-
tion designers opted for a design that gave bidders a chance to learn from

5 . ; : : ; -
‘bid” design in which bidders simply mail in bids 2nd the Federal Com-
munications Commission opens the envelopes and announces the highest
ones. One of the most powerful and surprising ideas in auction theory—
“revenue equivalence”—is that some types of auctions will, in theory, raise
the same amount of revenue as other auctions that are quite different in
structure. (For example, an “English” auction, in which prices are raised
slowly until only one bidder remains, is revenue-equivalent to a sealed-bid
“Vickrey” auction, in which the highest bidder pays what the second-highest
bidder bid.) But when it came to designing an auction that actual compa-
nies would participate in with billions of dollars on the line, the auction
designers were not willing to bet that sehavier would actually be equivalent
in different types of auctions, despite what theory predicted. Their design
choices reflect an émplicit theory of actual behavior in games that is probably
closer to the ideas in this beok than to standard theory based on unlimited
mutual rationality. Notice that, in this process of design and prescription,
guessing mnncamenq how players will actually behave—good m;.n&:‘cos|_m
crucial ®

S Howard Ruiffa pointed this out many tivaes, cailing game theory “asymmetricaily normative,”
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Even if game theory is notalways accurate, descriptive failure is prescrip-
tive opportunity. Just as evangelists preach because people routinely violate
moral codes, the fact that players violate game theory provides a chance to
give helpful advice, Simply mapping social situations into types of games is
extremely useful because it tells people what to look out for. In their pop-
ular book for business managers, Co-opetition, Brandenburger and Nalebuff
(1996) draw attention to the barest bones of 2 game—players, information,
actions, and outcomes. Both are brilliant theorists who could have written
a more theoretical book. They chose not to because teaching MBAs and
working with managers convinced them that teaching the basic elements of
game theory is more helpful.

Game theory is often used to prescribe in a subtler way. Sometimes
game theory is used to figure out what it is likely to happen in 2 strategic
interaction, 50 a person or company can then try to change the game to
their advantage. (This is a kind of engineering approach too, since it asks
how to improve an existing situation.) .

1.2 Three Examples

This chapter illustrates the basics of behavioral game theory and the ex-
_umdﬁmws.., m_u_u_,omnr with three @Sﬁ%_mm (which are Q_mnsmmaa in more

-, SN | P T,
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dination games, and “beauty contest” guessing games. hxﬁmﬁﬁamﬁ using
these games show how behavioral game theory can explain what people do
more accurately by extending analytical game theory to include how players
feel about the payoffs other @wm&aa receive, limited strategic thinking, and
learning. .

The three games use a Hmn%m underlying most of the experiments
reported in this book: pick a game for which standard game theory makesa,
bhold prediction or a vague prediction that can be sharpened. Simple games
are particularly useful because only one or two basic principles areneeded to
make a prediction. If the prediction is wrong, we know which principles are
at fault, and the results usually suggest an alternative principle that predicts
better.

In the experiments, games are usually posed in abstract terms because
game theory rarely specifies how adding realistic details will affect behavior.
Subjects make a simple choice, and know how their choices mhm the choices
of other subjects combine to determine monetary ﬁmmom,m Subjects are

7 These design choices bet heavily on the eognitive presumption that people are using generic prineiples
of strategic thinking which transcend idiosyneratic differences in verbal descriptions ol games. If choices are
domain specific then the basic enterprise this boak describes is incomplete; varying game labels to evoke
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actually rewarded based on their performance because we are interested in
cxtrapolating the results to naturally occurring games in which players have
substantial financial incentives. The games are usually repeated because we
are interested in equilibration and learning over time. An appendix to this
chapter describes some key design choices experimenters make, and why
they macter,

1.2.1 Example I: Ultimatum Bargaining

Tonce took a cruise with some friends and a photographer took our picture,
unsolicited, s we boarded the boat, When we disembarked hours later, the
photographer tried to sell us the picture for §5 and refused to negotiate, (His
refusal was credible because several other groups stood around deciding
whether to buy their pictures, also for $5. I he caved in and cut the price, it
would be evident to all others and he would lose a lot more than the discount
1o us since he would have to offer the discount to everyone.) Being good
game theorists, we balked at the price and pointed out that the picture was
worthless to him (one cheapskate offered $1). He rejected our insulting
offer and refused to back down. .

The game we played with the photographer was an “ultimatum game,”
which is the simplest kind of bargaining. In an ultimatum game there s
some gain from exchange and one player makes a take-it-orleave-it offer of.
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and what happens in the waning minuies before a labor strike is calied, or
on the courthouse steps before a lawsuit goes to trial. It is 2 model of the last
step in much bargaining, and hence is a building block for modeling more
complicated situations (see Chapter 4).

Simple games test game-theoretic principlesin the clearest possible way.
Ultimatum games, and related games, also are useful for measuring how
people feel about the allocations of money hetween themselves and others,

The analytical game theory approach to ultimatum bargaining is this:
First assume players are “self-interested”; that is, they care about earning
the most money for themselves. If players are self-interested, the Responder
will accept the smallest money amount offered, say $0.25. If the Proposer
anticipates this, and wants to get the most she can for herself, she will offer
$0.25 and keep $9.75. In formal terms, offering $0.25 (and accepting any
positive amount) is the “subgame perfect equilibrium”® By going first, the
Proposer has all the bargaining power and, in theory, can exploit it because
a self-interested Responder will take whatever she can get.

To many people, the lopsided distribution of the $10 predicted by ana-
lytical game theory (with selfinterest) seems unfair. Because the allocation
is considered unfair, the way people actually bargain shows whether people
are willing to take costly actions that express their concerns for fairness. In
the cruise-picture example, offering $1 instead of the §5 price the photog-
rapher offered added $4 to our surplus and subtracted $4 from his. If he

how to divide that gain. Our picture presumably had no value té him and
was valuable to us (worth more than $5 in sentimental value}. A price is
simply proposing a way to divide the gains from exchange between our irue
reservation price and his cost. His offer to sell for $5 was an ultimatum offer
because he refused to negotiate.

In laboratory ultimatum games like this, two players, a Proposer and
a Responder, bargain over some amount, say $10 (the sum used in many
experiments}. The §10 represents the value of the gain to exchange (or
“surplus”) that would be lost if the trade wasn’t made. The Proposer offers
« to the Responder, leaving herself §10 — x. The Responder can either take
the offer—then the Responder gets x and the Proposer gets $10 —~ x<or
reject it and both get nothing.

Because the ultimatum game is so simple, it is not a good model of
the protracted process of most naturally occurring bargaining (and isn’t
intended to be). It is the right model of what happened to us after the cruise,

domain-specific reasaning is the next step. The study by Cooper etal. (1998) of raichet effects in productivity
games wing Chinese factory managers—who face such effects in planned economies—is a good example
(sec Chapter 8).

thought this was unfair to himn, he could reject it and earn nothing (even
though everyone suffers—he earns no money and we don't get a picture
we would like to own). The lab experiments simulate this simplie game. Will
Responders put their money where their mouths are and reject offers that
seem unfair? If so, will Proposers anticipate this and make fair offers, or
stubbornly make unfair offers?

In dozens of experiments conducted in several different countries,
Proposers offer $4 or $5 out of $10 on average, and offers do notvary much.
Offers of §2 or less are rejected about half the time. The Responders think
much less than half is unfair and are willing to reject such small offers, to
punish the Proposer who behaved so unfairly. Figure 1.1 shows data from
a study by Hoffman, McGCabe, and Smith (1996a). The x-axis shows the
amount being offered to the Responder, and the y-axis shows the relative
frequency of offers of different amounts, The dark part of each frequency
bar is the number of offers that were rejected. Most offers are close to half

*Note also that every offer is 2 “Nash equilibrium” or mutual hest-response pattern because x is the
optimal offer if the Proposer thinks the Responderwill refect any other offer, (This belief tnay be wrong but,
if the Propaser believes it, she will never take an action that disconfirins her belief, so the wrong beitef can
lbe part of a Nash equilibriom.) )
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Figure 1.1 Offers and rejections in high- and low-stahes ultimatum games. Source: Based
on data from Hoffman, McCabe, and Smith (1996a).
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gal “nuisance cases” to renegotiate after a court judgment even when both
could benefit (Farnsworth, 1999), and so on.?

This explanation for ultimatum rejections begs the question of where
fairness preferences came from. A popular line of argument is that hu-
man experience in our ancestral past created evolutionary adaptations in
brain mechanisms, or in the interaction of cognitive and emotional systems,
which cause people to get angry when they are pushed around because get-
ting angry had survival value when people interacted with the same people
in a small group (see Frank, 1988). A different line of argument is that
cultures create different standards of fairness, perhaps owing to the close-
ness of kin relations or the degree of anonymous market exchange with
strangers (compared with sharing among relatives), and these cultural stan-
dards are transmitted socially through oral traditions and socialization of
children,

Remarkable evidence for the cultural standards view comes from a study
by eleven anthropologists who conducted ultimatum games in primitive cul-
tures in Africa, the Amazon, Papua New Guinea, Indonesia, and Mongolia
(see Chapter 2). In some of these cultures, people did not think that shar-
ing fairly was necessary. Proposers in these cultures offered very little (ihe
equivalent of $1.50 out of $10) and Responders accepted virtually every of-
fer. Ironically, these simple societies are the only known populations who
behave exactly as game theory predicts!

4

and low offers are often rejected. Figure 1.1 also shows that the same pattern
of results occurs when stakes were multiplied by ten and Arizona students
bargained over $100. (A couple of subjects rcjected $30 offers!) The same
basic result has been replicated with a $400 stake (List and Cherry, 2000) in
Florida and in countries with low disposable income, including Indonesiza

and Slovenia, where modest stakes by American standards represent several -

weeks’ wages,

There are many interpretations of what causes Responders to reject sub-
stantial sums (see Chapter 3). There islitle doubt that some players definea
fair split of $10 as close to half and have a preference for being treated fairly.
Such rejections are evidence of “negative reciprocity”™ Responders recipro-
cate unfair behavior by harming the person who treated them unfairly, ata
substantial cost to themselves (provided the unfair Proposer is harmed more
than they are). Negative reciprocity is evident in other social domains, even
when monetary stakes are ‘high—jilted boyfriends who accost their exes,
ugly divorces that cost people large sums, impulsive street crimes caused by
a stranger allegedly “disrespecting” an assailant, the failure of parties in le-

+ . . . 1es
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strategic principles underlying game theory (for example, Weibull, 2000).

- The Responder simply decides whether she wants both players to get noth-
[ing, or wants to get a small share when the Proposer gets much more. The

fact that a Responder rejects means she is not maximizing her own carnings,
but it does not mean she is not capable of strategic thinking. Recent theo-
ries attempt to explain rejections using social preference functions which
balance 2 person’s desire to have more money with their desire to recipro-

_cate those who have treated them fairly or unfairly, or to achieve equality.

Such functions have a long pedigree {iraceable at lcast to Edgeworth in the
1890s). Economists have resisted them because it seems to be too easy to
introduce a new factor in the utility function for each game. But the new
theories strive to explain results in different games with a single function.
Having a lot of data from different games to work with makes this enterprise
possible and imposes discipline.

9 My sisier Jeannine told me that in Adantic City the casinos sometimas have problems with lucrative
“high-roller” customers stealing Juxurious towels, robes, and other iteros from their (complimentary) hotel
vooms after lasiag at the casinos. In their minds thesc losers are simply taking things they have paid for,
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The new theories make surprising new predictions. For example, when
there are iwo or more Proposers, there is no way for any one of them single-
handedly to earn more money and limit inequality. As a result some theories
predict that both Proposers offer almost everything to the Responder even
though they de care about equality. (If there had been fwo photographers
on that damn boat, we would have gotten our picture for §1.)

New social preference theories should prove useful in analyzing bargain-
ing, tax policy, the strong tendency of tenant farmers to share crop earnings
cqually with landowners (Young and Burke, 2001), and wage-setting (par-
ticularly the reluctance of firms to cut wages in hard times, which is puzzling
to economists who assume changes in the price of labor will equalize supply
and demand, and cther phenomena).

1.2.2 Example 2: Path-Dependent Coordination in
“Continental Divide” Games

In coordinatior: games, players want to conform to what others do (although
they may have different ideas about which conformist convention is best).
For example, in California there is an ongoing struggle over the physical
location of the “new media” firms, such as internet provision of film and
entertainment. New media people could gravitate toward Silicon Valley,
where web geeks congregate, or toward Hollywood and Southern California,

is the better location depends on whether you think the location of internet
is central, and “content” producers should follow them, or whether
rnet is merely a distribution channel and content providers are

['his economic tug-of-war can be modeled by a game in which players
choose a location, and their earnings depend on the location they choose
and the location most other people choose, A game with this flavor has
been studied by Van Huyck, Battalio, znd Cook (1997). Table 1.1 shows the
payoffs (in cents). In this game, players pick numbers from 1 o 14 {think
of the numbers as corresponding to physical locations—low numbers are
Hollywood and high numbers are Silican Valley). The matrix in Table 1.1
shows the row player’s payoff from choosing a number when the median
number everyone in a group picks—the middle number—is the number
in the different colurns. If you choose 4, for mgﬁ_m. and the median
is B, you earn a healthy payoff of 71; but if the median is 12 you earn
14 (bankruptcy!). The basic payoff structure implies you should pick a
. . . |
WOF course, this example is undermined by the fact that cyberspace is everywhere and nowhere, 56!
content, providers might be able to stay put in the swank Hollywood Hills and still do business “in" Silicon
Valley without moving,
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low number if you think most others will pick low numbers, and pick a
high number if you think most others will pick high numbers. If you aren’t
sure what atherswill do, picka number such as 6, which gives payoffs ranging
from 23 to 82 (hedging vour bet). )

In the experiments, players are organized into seven-person groups.
The groups play together fifteen times. After each trial you learn what the
median was, compute your earnings from that trial (depending on your
own choice and the median}, and play again. Since the game is complicated,
think for a minute about what you would actuaily do and what might happen
over the course of playing fifteen times.

The payoffs have the property that, if a player guesses that the median
number is siightly below 7, her best response (o that guess is to choose a
nurmber smaller than the guess itself, For example, if H__..o.: think the median
will be 7, your best response is 5, which earns 83 cents. Thus, if medians are
initially low, responding to low medians will drive numbers lower until they
reach 3. Three is an equilibrium or mutual best-response point hecause, if
everyone chooses 3, the median will be 3 and your best response to a median
of 3 is to choose 3. If players were to reach this point, :c.:oaw couid profit
by moving away. (The payoff from this equilibrium is shown in ialics in

Table 1.1.}

Median choice
Choice 1 2 3 4 5 6 7 8 9 16 11 12 13[4

49 52 55 56 55 46 —59 -88 lSmIququluwmlz,w

1 45
2 48 53 58 62 65 66 61 —27 -52 —87 —77 —8 -82 —98
] 48 54 60 66 V0 T4 72 1 —20 -32 —41 —48 -B3 —58
4 48 51 58 65 71 77 B0 26 8 -2 -—9¢ —l4 119 -92
& 35 44 52 60 69 77 83 46 32 95 19 15 12 10
6 23 33 42 52 62 72 82 62 53 47 43 41 39 38
7 7 18 28 40 51 64 78 75 69 66 G4 6% 62 62
8 13 -1 11 23 37 51 69 8% 81 8 80 80 81 83
9 87 -24 -11 3 18 35 57 88 89 91 02 Y4 96 08

10 -85 —bl -87 —21 -4 15 40 8% 94 98 101 104 107 110

11 ~97 -82 —66 —49 —-81 -9 20 85 94 100 105 110 114 119

12 —1833-117-100 —-82 -61 -37 -5 78 Sl 99 106 1i2 118 1923

13 -173-156-187-118 -96 —69 -38 67 83 94 103 110 117 198
14 -217-~-198-179-158~134-105 —65 52 72 85 95 104 112 120

Source: Van Huyek, Baualio, and Cook (1997).
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But there is another Nash equilibrium. Xf players guess that thc median
will be 8 or above, they should choose numbers that are higher than their
guesses, until they reach 12; 12 is also a Nash equilibrium because choosing
12 gives the highest payoff if the median is 12.

This is a coordination game because there are two Nash equilibria in
which everybody chooses the same strategy. Game theorists have struggled
for many decades to figure out which of many equilibria will result if there
are more than one.

This particular game illustrates processes in nature and social systems
inn which small historical accidents have a big long-run impact. A famous’
example is what chaos theorists call the¢ “Lorenz effect™ Because weather
is a complex dynamic system, the movement of a butterfly in China can
set in motion a complicated metcorological process that creates a storm
in Bolivia. If that butterfly had just sat still, the Bolivians would be dry!
Another example is what sacial theorists call the “broken window effect.”
Anecdotal evidence suggests that, when there is a single broken window
in a community, neighbors feel less obligation to keep their yards clean,
replace their own broken windows, and put fresh paint on their houses.
Since criminals want to commit crimes in communities where neighbors
aren’t watchful and other criminals are lurking (so the cops are busy), a
single broken window can lead to a spiralling process of social breakdown.
Policymakers love the broken window theory because it suggests an casy fix

to problems of urban decay—repair every window before theeffectofafew——

broken ones spreads throughout the community like a virus,

I call the game in Table 1.1 the “continental divide” game. The conti-
nental divide is a geographic line which divides those parts of North America
in which water will flow in one direction from the parts in which water flows
in the opposite direction. If you stand on the continental divide in Alaska,
and pour water from a canteen as I once did, some drops will flow north
to the Arctic Ocean and others will flow to the Pacific Ocean. Two drops of
water that start out infinitesimally close together in the canteen end up a
thousand miles apart.

The game is called the continental divide game because medians below
7 are a “basin of attraction” {in evolutionary game theory terms} for conver-
gence toward the equilibrium at 3, Medians above 8 are a basin of attraction
for convergence toward 12. The “separatrix” between 7 and 8 divides the
game into regions where players will “flow” toward 3 and players will flow
toward 12. A

Which equilibrium is reached has important economic consequences.

The 12 equilibrivm pays $1.12 for each player but the 3 equilibrium pays -

only $0.60. On. this basis alone, you might guess that players would choose
higher numbers in the hopes of reaching the more profitable equilibrium.
Before glancing ahcad, ask yourself again what you think will happea. Ifyou
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Figure 1.2.  Median choices tn the “continensal divide” game. Soyrce: Based on data from
Van Huyck, Batialio, and Cook (1997).

have studied a lot of game theory and still aren’t sure what to expect, your
curiosity about what people actually do should be piqued.

Figure 1.2 shows what happened in ten cxperimental groups. Five
groups started at a median at 7 or below; all of them flowed toward the
flowed to the high-payoff equilibrium.

‘The experiment has two imiportant findings. First, people do ot always,
gravitate toward the high-payoff equilibrium even though players who end
up at low numbers earn halfas much. (Whether they would if they could play
again, or discussed the game in advance, is an interesting open question.)
Second, the currents of history are strong, creating “exireme sensitivity to
initial conditions.” Players who find themselves in a group with two or three
others who think 7 is their lucky number, and choose it in the first period,
end up sucked into a whirlpool leading to measly $0.60 earnings. Players in
a group whose median is 8 or higher end up earning almost iwice as much.
One or two Chinese subjects choosing 8—a lucky number for Chinese—
could bring good fortune to everyone, just as the butterfly brought rain on
the Bolivians,

No concept in analytical game theory gracefully accounts for the fact
that some groups flow to 3 and carn less, while others flow to 12 and earn
more. Indeed, the problem of predicting which of many equilibria will resuit
in games such as these may be inherently unsolvable by pure reasoning. So-
cial conventions, communication, subtle features of the display of the game,
analogies players draw with experiences they have had, and homespun idcas
about Iucky numbers could all influence which equilibrium is reached. As
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Schelling (1960) wrote, predicting what players 5:.&0 in these games by
pure theory is like trying to prove that a joke is funny without telling it.

1.2.3 Example 3: “Beauty Contests” and lterated Dominance

In Keynes's famous book General Theory of Employment, Interest, and E.a:ﬂr
he draws an analogy between the stock market and a newspaper contest in
which people guess what faces others will guess are most beautiful: “It is not
a case of choosing those which, to the best of one’s judgment, are really
the prettiest, nor even those which average opinion genuinely thinks the
prettiest. We have reached the third degree, where we devote our intelli-
gences to anlicipating what average opinion expects the average opinion
to be. And theré are some, I believe, who practise the fourth, fifth, and
higher degrees” (1936, p. 156). This quote is perhaps no more apt than in
“ the year 2001 (when 1 first wrote this), just after prices of American internet
stocks soared to unbelievable heights in the largest speculative buhble in his-
tory. (At one point, the market valuation of the e-tailer hookseller Amazon,
which had never reported a profit, was worth more than all other American
booksellers-combined.) . ,
Asimple game that captures the reasoning Keynes had in mind is called
the “beauty contest” game (see Nagel, 1995, and Ho, Camerer, and Weigelt,
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computed—by iterated application of dominance. A’ dominated strategy is
one that yields a lower payoff than another (dominant) strategy, regardless
of what other players do. Choosing a number above 70 is a dominated
strategy becausc the highest possible value of the target number is 70, so
you can always do better by choosing a number lower than 70, Butif nobody
violates dominance by choosing above 70, then the highest the target can be
is 70 percent of 70, or 49, so choosing 49-70 is dominated if you think others
obey one step of dominance. Deletin g dominated strategies iteratively leads
you to zero.

Many interesting games are dominance solvable. A familiar example in
economics is Cournot duopoly. Two firms each choose quantities of similar
products to make, Since their products are the same, the market price is
determined by the total quantity they make (and by consumer demand). It
is easy to show that there are quantities so high that firms will Iose money
because flooding the market with so much supply will drive prices too low to
cover fixed costs. If you assume your rivals won’t produce that much, then
somewhat lower quantities are bad (dominated) choices for you. Applying
this logic iteratively leads to a precise solution.

In practice, it is unlikely that people perform more than a couple of
steps of iterated thinking because it strains the limits of working memory
(ie,, the amount of information people can keep active in their mind at
one time). Consider embedded sentences such as “Kevin's dog bit David's

1998) In 2 typical beauty contest game, each-of N players simuliancously
)

chooses a number x; in the interval [0,100]. Take an average of the numbers
and multiply by a multiple p < 1 (say p = 0.7). The player whose number is
closest to this target (70 percent of the average) wins a fixed prize. Before
proceeding, thirk about what number you would pick. :

The beauty contest game can be used to distinguish whether people
“practise the fourth, fifth, and higher degrees” of reasoning as Keynes
wondered. Here’s how. Most players start by thinking, “Suppose the average
is 50", Then you should choose 35, to be closest to the target of 70 percent of

- the average and win. Butif you think all players will think this way the average
will be 35, so a shrewd player such as yourself (thinking one step ahead)
should choaose 70 percent of 85, around 25, Butif you think all players think
that way you should choose 70 percent of 25, or 18.

In analytical game theory, players do not stop this iterated reasoning
until they reach a best-response point. But, since all players want to choose
70 percent of the average, if they all choose the same number it must bhe
zero. (That s, if you solve the equation x* = (.7x*, you've found the unique
Nash equilibrium.)

The beauty contest game provides a rough measure of the number of
steps of strategic thinking that subjects are doing. Itis called a “dominance-
solvable game” because it can be “solved”"—i.e., an equilibrium can be

matlman whose sister’s boyfriend gave the dog to him.” Who's the “him”
referred to at the end of the sentence? By the time you get to the end,
many people have forgotten who owned the dog because working memory
has only so much space.! Embedded sentences are difficult to understand.
Dominance-solvable games are similar in mental complexity.

Tterated reasoning also requires you to believe that others are thinking
hard, and are thinking that you are thinking hard, When I played this game
ata Caltech board of trustees meeting, a very clever board member (a well-
known Ph.D. in finance) chose 18.1. Later he explained his choice: He knew
the Nash equilibrium was 0, but figured the average Caltech board member
was clever enough to do two steps of reasoning and pick 25. Then why not
pick 17.5 (which is 70 percent of 25)? He added 0.6 so he wouldn’t tie with
people who picked 17.5 or 18, and because he guessed that a few people
would pick high numbers, which would push the average up. Now that’s
good behavioral game theory! (He didn’t win, but was close.)

What happens in beauty contest games? Figure 1.3 shows choices in

‘beauty contests with $ = 0.7 with feedback about the average given to

H_mn&nm the sentence on the written page makes it aosier: try reading I aloud to somebady who must

remember the words and eannot refer back to them. .
e
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(a)

Figure 1.3.  Convergence in low-stakes and high-stakes “beauty condest
published daia from Ho, Cameres, and Weigelt.

»

subjects after each of ten rounds (unpublished data from Ho, Camerer, and .

Weigelt). Bars show the relative frequency of choices in different number in-
tervals {on the side) across ten rounds (in front). The first histogram shows
results from games with low-stakes payoffs (a $7 prize per period for seven-
person groups) and the second histogram shows results from high-stakes
($28) payofts.

Firstround choices are around 2140, A careful statistical analysis indi-
cated that the median subject uses ane or two steps of iterated dominance.
That is, most suhjects ronghly guess that the average will be 5¢ and choose

35, or guess that others will choose 35 and choose 25. Very few subjects chose |

the equilibrium of zero in the first round. In fact, they should net choose
zero. The goal is ta be one step ahead of the average but no further and
choosing zero is being too smart for your own good!

games. Source: Un- .

(b)
Figure 1.3 (continued)

Although the game-theoretic equilibrium of zero is a poor guess about
initial choices, players are inexorably drawn toward zero as they learn.

~ Behavioral game theory uses a concept of limited iterated reasoning to
‘understand initial choices and a theory of learning to explain movement

across rounds.
The beauty contest has been replicated in dozens of subject pools (see
Chapter b for details), including Caltech undergraduates,'? trustees on

12 Galtech students arc a useful subject poal because they are extraordinarily analytically skilled. In many
years, the incoming first-year class has a median math SAT score of 800. Recently, the average test scores of
the applicanis have been higher than the average of those students who are-aampled 2t Harvard. Studying
how these students play simple games establishes whether very analytical stedents can figure the games our.
Generally they do not play much differently than students at other colleges.
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the Caliech beoard {inciuding a subsampie of corporate CEOs), economics
Ph.D.s and game theorists, and readers of business newspapers (the finan-
Fimes in the United Kingdem, Spekirum in Germany, and Expe i
Spain}. The results in all these groups are very similar: Players use 0-3 levels
of reasoning, and few subjects choose the Nash equilibrium of zero. Com-
paring Figures 1.2(a) and 1.3{b) shows that increasing the prize by a factor
of four, leading to average earnings of $40 for a 45-minute experiment, has
only a small effect. (In the high-stakes conditicn there are more low-number
choices in periods 5-10

‘The limited iterated reasoning measured in these games provides one
explanation for persistence of phenomena such as the stock price bubbles
Eeynes had in mind. Even if ail investors foresee a crash, they do not
*backward induct” all the way to the present. They guess that others will
sell a couple of steps before the crash, and plan to seil just before that
exodus, This reasoning process does not unravel all the way (because doubt
“reverberates™, which explains why bubbles can persist even if everyone
knows they will eventuzlly burst. Allen, Morris, and Shin (2002) make their
argument precise and Camerer and Weigelt (1993} and Porter and Smith,
{1994} show that bubbles can happen in the lab.

1.3 Experimental Regularity and Behavioral Game Theory
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gists) but to improve it by establishing regularity, which inspires new theory.
Without some sort of observation, _rmowe:nmm assumptions are grounded
in casual pseudg-empirical work—informal opinion polls in seminar and
office discussions and using one’s own intuitions (a one-respondent poll),
Biologists don’t just ask “If I was a robin foraging for foed, how might I
do it?” They watch robins forage, or ask somebody whe has, Theorist {and
part-time nx_:iﬁm_:al Eric Van Damme, among :Emﬁm. worri

effects of having too few data of this sort in game theory (1929,

Without having a broad set of facts on which to theorize, there is a
certain danger of spending too much time on 309.? that are math-
ematically elegant, vet have little connection to actual hehaviour, At
presentour empirical knowledge isinadequate [ _uaon; _< the same word
von Neumann and Morgenstern used fifty years before!] and itisan in-
teresting question why game theorisis have not turned more frequently
o psychologists for information about the learning and information
processing processes used by humans.

Data are particularly important for game theory because there is often
more than one equilibrium (see Chapter 7} and how equilibration cccurs is
not perfectly understood (see Chapter 6). Pure mathematics alone will not
solve these problems.

Why has empirical observatior—played—a st Tole im game theory,

Hr? _uoor is a long answer to a question game theory students often ask:
“Th 'y is interesiing . . . but do people actuaily play this way?” The
ANSWET, NOL mﬁﬂudi:m? 15 :EMQ_ There are no interesting games in which
subjects reach a predicted equilibrinm immediately. And there are no games
so complicated that subjecis donot converge in the direction of e ;E:Q ium
(perhaps quite close to it) with m::cmw experience in the lab,

Consider the three examples above, In ultimatum bargaining, piayers
are far from the perfect equilibrium-asstuning self-interest, but they are
roughly in equilibrium when the Responder’s preference for being treated
fairly is taken into account (because offers maximize expected profit given
observed rejection rates). Behavioral game theory explains these results by
combining new theories of social utility with analytical game theory (sce
Chapter w\_ In the continental divide and beauty contest games, players start
far from equilibrium and converge close to itin ten periods or so. Behavioral

game theory explaing these results usine concepts of limited reasoning as
NQEQ SOOH% ﬂ%hv—m.»:m these results —Hmﬂ.—m OOHMFOHUﬁm ot limited ﬂnmmoa_.ﬂm Smi

players first think about a game (see Chapier 5) and precise theories of
learning (see Chapter 6).

Sherlock Holmes said, “Data, data! I cannot make bricks without clay.” |
Experimental results are clay for behavioral game theory. The goal is not to
“disprove” game theory (a common reaction of psychologists and sociolo-

until recently? One va%:&mg ts that early experimentation was thought
to have “failed”, In a 1952 RAND conference, several theorists (incinding

" eventual Nobel _::ﬂnmnm Nash) gathered to think about game theory. They

also did some experiments, the results of which did not confirm theory and
reportedly discouraged Nash and perbaps others (Nasar, 1998).' Interest

" in data also suffered from the fact that so many interesting mathematical

puzzles were open for solution in game theory for such a long time.
From about 1370 onward, developments in the theory of repeated games,
games of incomplete information, and applications to important fields such

as principal-zgent relations, contraciing, and political science {ed 1o an

and left ﬁm_n_n ar nc..mo:h: In his _"_:wmz Nash (1950) aomancma a ..E.ﬁﬂ aclon™ ::Qm:m...:a: of aa-.:_c::_:
similar to modern evolutionary game theory (Weibull, 1995). Weighted fictitious play (sue Chapter 6), which
seeins to have been revived by empiricists around 1995, is described in the amazingly insighttul hook by Luce
and Rajifa (1957}. Sciten (1978) emphasized how players perceive the game they play, a topic being revived hy
Rubinstein (1991), Camerer (1989}, and Samuelson {2001), among othiers. Rosenthal (1989) first proposed
2 "quantal response equilibrium” version, later refined and applied by McKelvey and Palfrey (1495, 1998)
and Goeree and Hoilt (1999).
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explosion of théory. There is no doubt that this pursuit has been extremely
insightful and necessary, but it was conducted with little empirical gridance
of any sort. There is also little doubt that it is high time to raise the ratio of
chservation to theory. Itis also encouraging that some theorisis have turned
serious attention to modeling bounded or procedural rationality formally
{e.g., Rubinstein, 1098) .15

Of course, experimental data are only one component of behavioral
game theorv. Detailed facts about cognitive mechanisms and field tests are
irrrportant t0o.® The result of controlled experiments, field abservation,
and theorizing working together is summarized by Vince Crawford (1997,
p. 208):

The experimental evidence suggests that none of the leading theoreti-
cal frameworks for analyzing games—traditional non-cooperative game
theory, cooperative game theory, evelutionary game theory, and adap-
tive learning models—gives a fully reliable account of behavior by itself,
but that most behavior can be understood in terms of a synthesis of
ideas from those frameworks, combined with empirical knowledge in
proportions that depend in predictable ways on the environment.

Rapid development of behavioral game theory will depend on how scientists

react to data. Reactions vary.
If you are smitten by the elegance of analytical game theory you might

simply showing wlictlier subjects undersitood the game and
were motivated. If the data confirm game theory, you tnight say, the subjects
must have understoed; if the data disconfirm, the subjects must have not
understood. Resist this conclusion, The games are usually simple, and most
experimenters carefully control for understanding by using a quiz to be sure
subjects know how choiceslead to payoffs. Furthermore, by inferring subject

understanding from dara, there is no way to falsify the theory. Physicistsand

biologists would not have the same reaction if a theory about particles were
falsificd by careful experimentation (“The particles were confused!”) or if
birds didn’t forage for food as predicted (“If they had more at stake [than
survival?] they would getitright!”), Game theorists should be similarly open-
minded to what behaving humans can teach them about human behavior.
In fact, evidence cited as confirmation of game theory often supports
a key element of behavioral game theory—nammely, that equilibration may
take a long time, perhaps years or decades (and equilibration is therefore a
cructal component of any theory). In the foreword to Roth and Sotomayor’s

15Tis includes finite automata, e-equilibrium, evolutionary and dynamic theories, non-partitional
information structiures, and §o on. Most of this wovk is not directly inspired or disciplined by dats, however,

1 Roth's work on matching for college bowl games, sorority rush, and medical residency arc rare,
impressive examples (e.g., Roth and Xing, 1994), )
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11950) book about the theory of matching markets, the brilliant mathemati
cian Robert Aumann notes that

the Gale-Shapley [matching] algorithm had in fact been in practical
use zlready since 1951 for the assignment of interns to hospitals in the
United States; it had evolved by a trial-and-error process that spanned
more than halfa century. . . . in the veal real world—when the chips are
down, the payoff is not five dollars but 2 successtul career, and people
have time to understand the sitnation-—the predictions of game theory
fare quite weil.

Note that the “time to understand the sitnation” Aumann refers to was fifty
vears!!” Over such a span, a learning or equilibration theory is essential, .

Another reaction you may have is to criticize details of experimental
design. Aumann, again, writes {1980, p. xi):

Itis sometimes asserted that game theory is not “descriptive” of the “real
world,” that people don't really behave according to m.m? e-thearetic pre
scriptions. To back up such assertions, some workers have condizcted
cxperiments using poorly metivated subjects, subjects who do not un-
derstand what they are abont and are paid off by pittances; as if such
experiments represenied the real world.

Aumann is alluding to an earlier generation ofexperiments in the 1960sand
1970s which were not sensitive to subject comprehension and incentives,
This book largely ignares those experiments (tho some are described
in Chapter 3). The modern experiments described in this book—mostly
from the past ten years—fully respect concerns such as Aumann’s and are
designed with them in mind. Subjects are typically analytically skilled college
students who are quizzed and highly motivated.

Anotherreaction you are likely to have when behavior does not conform
to analytical game theory is that subjects were playing a different game
than the experimenter created. Such ex planations are useful if they can
be tested and falsified. However, these explanations make experimenters
bristle when they are made in ignorance of the extraordinary care taken
sion, control for anonymity when trying to
create one-shot games, and variation in stakes and subject pool to check
for robustness.

ilar point i le by Dixit and Skeath (1399). Stepher Jay Gould (1988) argued that basehall
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For example, a common interpretation of the fact that Responders
reject offers in ultimatum games is that the Responders think they might
be playing a repeated game because they will meet the Proposers again. But
experimenters go to great lengths to ensure that subjects won’t meet again
and know that. For example, some experimenters pay ms_u,_..mnﬁm one at a time,
with a short lag between each payment, and stand in the hall to be sure
subjects don't wait for others to leave. Under these conditions, the faux-
repeated-game explanation of ultimatum results is simply wrong. Others
(such as the famously careful Ray Battalio} are known to end an experiment
immediately if a subject says something aloud that others hear, breaking the
experimenter’s control. The reaction that subjects are playing a different
game than the experimenter intended should disappear as more theorists
learn about what actually happens in laboratories and come to believe in
the quality of the data that are produced.

Still another reaction you may have is that behavior which is not ra-
tional can’t be modeled. For example, several years ago Abreu and Mat-
sushima {1999b) said experimental results are frequently inexplicable by
“even approximately rational explanation.” I disagree: Virtually all the re-
sults reported in this book can be accommeodated by including behavioral
components—social utility, Hmited iterated reasoning, and learning—into
analytical theory. They go on to ask, “Should we then give up the rationality
paradigm?” Of course not. It is too usefull as a source of sharp predictions,
ory extends rationality rather than abandening it. The last chapter of this
book shows how.

w..n» Conclusion

This chapter described three examples which illustrate experimental reg-
ularity, and hinted how that regularity is formalized in behavioral game
theory. .

In the ultimatum game, Proposers typically offer close to half of a sum
to be divided, and Responders reject offers that are too low because they
dislike unfairness. The game is so simple that it is impossible o believe Re-
sponders rejecting money are confused, and the result has been replicated
for very high stakes (up to $400 in America, and comparable sums in for-
cign countries). According to behavioral game theory, Responders reject
low offers because they like to earn money but dislike unfair treatment (or
like being treated equally). In the continental divide game, players gravitate
toward equilibria over time and often end up in Pareto-inefficient equilibria
they could have avoided. Behavioral game theory explains this by assuming
that players aren’t sure what to do {(at the beginning of the game}, so they
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pick numbers in the middle; then they respond to history according to sim-
ple statistical learning rules. In the beauty contest game, players seem to
“do one or two steps of reasoning about others, theén stop. {Analytical game
ﬂ:nmz,u\ assumes they keep going until they reach a mutual best-response
equilibrium.) And they learn over time. Later chapters expand on these
results and describe other classes of games (mixed equilibria, bargaining
signaling, and auctions). »

APPENDIX
Al.1 Basic Game Theory
This appendix introduces basic ideas in game 5.@03\‘& The goal is to equip

.the novice reader to understand the gist of the rest of the book. If you do
not have some other background in game theory, and are serious about

. understanding the experimental results described later, vou should read

other boaks. A good introductory book (low on math) is Dixit and Skeath
(1999). More mathematical books include Rasmusen (1994) and Oshorne
and Rubinstein (1995), Ginus (1999) includes fresh material on cvolution-
ary theory and experimental data, and tons of problems, The heavy tomes

tatarcusedimgraduate classes at places such as Caltech include Fudenberg

-and Tirole (1991).

Notation: Player #'s strategy is denoted 5. A vector of strategies, one
for cach player, is denoted s =5, 55, ..., 5,. The part of this vector which

. removes player ¢'s strategy (i.e., every other Player’s strategy) is denoted s_,,

The utility of player i's payoff from playing s; is w;(s;, 5_,).

Al.1.1 Dominance

Definition ALI.1 The strategy s7 s @ dominant strategy if it is a strict best resfonse

io any feasible strategy that the others might play
w57, $_g) > (s}, 5 ¥s_,, 5 %S
The strategy 5. is dominated if there exists 5! € §; such that

(s}, 5_5) > (s}, 5.5) Vs_;.

**Thanks to Angrela Hung for writing much of this appendix.
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The strategy s| is weakly dominaled if there exists 5] € S; such that

E.an s = F.QM, 5_;) Vs,

wi(s), 5_) > (s, s.;) Tor atleast one s_;.

Example AlLL1 Consider the simple normal-form game below. In & normabform
(aka strategic-form or matvix) game players are presumed to move simulfaneously so
there is no need lo express the order of their moves in a graphical tree (or extensive-
Jorm). Each cell shows a pair of payoffs. The left payoff is for the row player (1) and
the right is for the column player (2). The payoffs areudilities for consequences. That
is, in the original game the consequences may be money, pride, reproduction by genes,
lerritory in wars, company profils, pleasure, or pain. A key assumption is that players
can express their satisfaciion with these outcomes on a numerical utility scale. The
scale must at least be ordinal—i.e., they would rather have an outcome with uiility 2
than with utility 1—and when expected uiility caleulations are made the scale must
be cardinal (i.e., gelting 2 is as good as a coin flip between 3 and 1),

Player 2

D

Tor player 2, strategy R is strictly dominated by M (because M gives a higher
payoff if player 1 chooses U, 2 instead of 1, and a higher payeff if player 2 chooses D,
1 instead of 0). Deleting strategy R (i.e., assuning @ vational player 2 will never play
it) makes D strictly dominated &by U. But if player 1 plays U, then player 2 should play
M. Theregfore, the iterated-dominance equilibrivm is (U, M).

Dominance is important because, if utility payoffs are correctly specified
{one need get only their order right) and players care only about their own
utility, there is no good reason to violate strict dominance. One step of
iterated dominance is a judgment by one player that the other player willnot
make a dumb mistake. This often tells a player what she herself should do.
In the example, player 1 might consider choosing D because of the chance
of earning the 2 payoff in the lower right (D,R) cell. But will she ever earn

that payoff? Only if player 2 does something that is dominated. If player 1

assumes player 2 won't do that, she can rule cutR, and her hope of earning
2 disappears. Then she should obviously choose U.
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Example A1.L.2 (Batile of the Sexes)

Flayer 2
L M
Player 1 U 2,1 0,0
D 0,0 1,2

N.\x gome is not dominance solvable. Neither strategy is dominant (or dominated) for
esther player because there is no one strategy that is always best. Pul differently, each
strategy might e best depending on what you think the other person will do.

A1.1.2 Nosh Bquilibrium

Definition AL.1.2 The strategy profile s* = (s}, s* ) is a Nash equilibrium (NE) if
each player’s strategy is a best response to the other Players’ sivategies. That is, no player
has incentive to deviate, if no ather player will deviate. (If layers find themsetves in
equilibrium, there is no reason to move away.)

’
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Example A1.1.3 (Baitie of the Sexes) Solving for purestrategy Nash equilibrivm:

Player 2

L R

Player1 U 2,1 0.0
Dl oo 1,2

If player 1 plays U, 2's best response is L. If player 1 plays D, 2’s best response és R.
If player 2 plays L, 1's best response is U, and if 2 plays R, I’s best response is D.
Therefore, U is a best responseto L, and L is @ best response to U. Likewise, D is a best
response to R and R is a best response to D: Pure strategy NE are (U,L) and (D,R).

Al.1.3 Mixed Strategies

wﬁ :.mmxm& strategy for player i Is a probability distribution overall the strategies
111 ;.
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Example AL1.4 (Battle of the Sexes) Solving for mixed-strategy Nash equilbrium:

Player 2
L R
Ployer1 U 2,1 00 v
D 0,0 1,2

Suppose player 1 plays U with probability p and D with frobability I—p and player
2 plays L with probability g and R with probability 1—q.
Then the expected valie to 2 from playing L is

Ip+01-p)
and the expected value to 2 from playing R is

0p+2(1 - p).
Player 2 is indiffevent iff

1p+00-p=0p+201-p)

The expected value to 1 from playing U is
2¢+ 01— g)
and the expected value from playing D is
Og + 11— ¢).
Player 1 is indifferent iff
2+ 01— ¢)=0g+ 11— g

or

As a vesult, a pair of (weak) best responses constitutes a mixed-slrategy equilibrivm:
(Guv.401.4L3R).

ALl Basic Game Theory 2%

Mixed-strategy equilibrium is a curious concept. Introducing mixed
strategies makes the space of payoffs convex (i.e., for any two points in the
space, all points in between are in the space too), which is necessary Lo
guarantee existence of a Nash equilibrium (in finite games). Guaranteed
existence is a beautiful thing and is part of what makes game theory pro-
ductive: For any (finite) game you write down, you can be sure to find an
equilibrium. This means that a policy analyst or scientist trying to predict
what will happen will always have something concrete o sav.

However, the behavioral interpretation of mixing strategies is dubious.
By definition, a player desires to mix only when she is indifferent among
pure strategies, which means she does not (strictly} desire to mix with
particular probabilities; she just doesn’t care what she does. Furthermore,
one player’s equilibrium migture probabilities depend only on the other
player’s payoffs, which is odd. A modern interpretation of mixed-strategy
equilibrium (called “purification”) is that one player might appear to be
mixing but is actually choosing a pure strategy conditional on some hunch
variable they privately observe. Mathematically, this works the same way—
as long as each player’s belief about the other players’ choice matches the
predicted probabilities, the mixed equilibrium is 2 mutual best-response
point. Chapter 3 gives more detail,

Player 2
L(y) M(s) R(l—r-—3)
Player I T(p) 30,30 50,40 104,35
M{q) 40,50 45,45 10,60
Bl—p—g 35,100 60,10 0,0

Player I:

307 + 505 + 1001 — r — 5) = 40¢ + 455 + 1061 - r—s)
=357 +60s+0(1 —r — 5),
or

)
-,
56

=2

”_.I..ﬂ.l.....“ [.ml.
83
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Because the game is symmeiric,

22
83"’
b6
83’

¥

1
Il

p

i
I

g=3

=1—r m1w
t=p—g= T 83

Al 1.4 Constant-Sum Games

In a constant-sum game, the sum of the payoffs of the players is constant
across outcomes. Constant-sum games are actually extremely rare because
even when the sum of physical payoffs is constant (like bargaining over
money or food-sharing) the players’ utilities probably do not w&mao a con-
stant. For two-person, copstant-sum games, minimax, maximin, and Nash
equilibrium all select the same strategy.

Definition A1.1.3 The sirategy s} is a maximin strategy if ié maximizes i s mindmaum
possible payoff; that is,

Definition Al.1.4 The strategy s} is a minimax stralegy if it minimizes the other
. players’ maximum possible payoff; that is, :

§f = arg min _HBmN slm_ .
5 3¢

Exumple A1.1.6 (Matching Pennies)

Player 2
L R
Player1 U 1,0 0,1
D 0,1 1,0

If the game is expanded to include mixed strategies, then 3« MAKIMIN strategy g@_,
the row player 1 is to randomize equally over U and D, which gives an .ﬁg&&. Ea&
of 0.5 for both L and R. Hence, 0.5 is the maximin value. It is also the mindmax
sirategy because it guaraniees that the column player 2 makes no more than 0.5 (in
expected utility). It is also the unique Nash equilibrium.
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In constant-surn games, minimax is 2 heuristic way of respecting the
fact that the other player's best responsiveness (as in Nash equilibrium)
will necessarily give you the lowest payoff, because the players’ interests are
strictly opposed. If you bestrespond, I'll get the least; my best response to
that likelithood is to maximize the least I can get.

Al L5 ExtensiveForm Games and Information Sets

An extensive-form game is used to model games where there is a specific
order of moves. An extensive-form game is (1) a configuration of nodes
and branches running without any closed loops from a single (root) starting
node to its end (terminal) nodes; (2) an indication of which node belongs
to each player; (3) probabilities that “nature” (an outside force) uses to
choose branches at random niodes; (4) collections of nodes, which are called
information sets; and (5) utility payoffs at.each end node.

"Definition AL.L.5 An information set for a player is a collection of decision nodes
- satisfying:

L. The player has the move ai every node in the information sef, and
2. When the play of the game reaches a node in the information set, the blaver with

AL.1.6 Subgame Perfection

An equilibrium for an extensive-form game specifies what each player will
do at each information set, even those not reached. Subgame perfection im-
poses the further restriction that players will actually play their equilibrium

- strategy if the subgame is reached (Selten, 1965). (A subgame is the contin-
-uation game from a singleton node—i.e., a node which has no other nodes

in its information set—to the end nodes which follow from that node.) In

. my view, this “refinement” of Nash equilibrium simply patches up an omis-
ston in Nash’s concept, which was not evident until theorists began thinking

about extensive-form trees rather than matrices.

Example ALL7 Mini-ultimatum game

Player 2

Player 1 E 55
A R
U 8200
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In this mini-ultimatum game, player 1 moves first and offers an even (E)
split of 10, paying (5,5}, or offers an uneven (U) split. If E is chosen, the
game ends and both players earn 5. If U is chosen, player 2 is "on the move”
and can choose to accept (A), in which case player 1 gets 8 and player 2 gets
2, or can reject (R), in which case both get nothing.

The strategy profile (E, RIU) is a Nash equilibrium because it specifies
moves at each node, and strategies are—technically—best responses. If
player 1 anticipates that player 2 will choose R after a move of U, then player
1 should choose E to earn 5. And if player 1 is going o choose E, it makes

no difference what player 2 does—"planning” to respond with R to U is not

penalized because, in equilibrium, player 2 is never called upon actually to
play. Playing U after R is a weak best response because in this equilibrium R
never results. Subgame perfection requires that, if the U node is reached,
then player 2's subsequent strategy must be a best response. But since R
carns ( for player 2 and A earns 2, the best response in the subgame that
resultswhen player I chooses Uis to play A, Anticipating this, player 1 should

choose U. Therefore, (U, AlU) is a Nash mmEEuﬁGE and is also mﬂwmman

perfect.

Al 1.7 Bayestan-Nash Equilibrium

the other players’ payoff function(s). H:a is Rma_cowm:w represented (after
Harsanyi, 1967-68) by having “nature™ move‘at the beginning of the game
and determine 2 player’s “type.” Players observe their own types but not
the types of others. (In formal terms, the player who knows her type knows

which branch emanating from the start node nature chose. The player who

does not know the other player’s type has an information set containing
nodes that emanate from both branches following from the start node.)
However, the probability distribution of types is common knowledge (the

“common prior” assumption). Bayesian-Nash equilibrium adds two features:
to Nash equilibrium: (i) Along the equilibrium path (i.e., for all moves '

that occur in equilibrium with positive probability), players must update
their beliefs about player types using Bayes’ rule. Bayes’ rule states that
P(H,\D) = P(D|H)P(H;)/ MH = 1P(D|H,)P(Hy), where H; are n different

hypotheses {e.g., possible player types) and D is the observed data (e.g., a.

player’s move). (i} Off the equilibrium path (i.e., after moves that never oc-
cur in equilibrium), players should have some belief ahout player types. Note
well that Bayes’ rule does not restrict what these beliefs should be, because
- an off-path move has probability zero (i.e., P(D[F) = 0 VH;}. Then the de-
nominator of the updating equation is zero and Bayes’ rule breaks down.
Hence, Bayesian-Nash equilibrium imposes the minimal a-Bayesian restric-
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-, tion on what off-path beliefs should be—namely, they should be something!

This simply rules out the possibility that players will violate dominance after
observing an off-path move,

AL L8 Trembling Hand Perfection

Selten (1975) suggested a clever way to subject off-equilibrium-path beliefs
to the discipline of Bayes’ rule, called “trembling hand perfection.” The
idea is to suppose that, even in an equilibrinm, there is a small chance that a

~+ " player’s hand trembles when she chooses, so that 4/l paths through the tree

are taken with positive prebability, Then Bayes' rule can be used to update
beliefs. A trembling hand perfect equilibrium is the limit of the Bayesian-
Nash equilibria with trembling, as the tremble probability goes to zero. Many

" others have suggested further refinements which try to codify, logically, what.

sort of beliefs after off-path moves seem intuitive or sensible. Sequential -
equilibrium (Krepsand Wilson, 1982a) is 2 kissing cousin of tremubling hand
‘perfection and is generically the same (i.c., the only games in which the
two differ are knife-edge cases, in a way Emﬂ can be made mathematically
precise). Myerson (1978) suggested that the tremble probabilities should be
smaller when payoff differences between equilibrium and nonequitibrium

“strategies are _m:,mmﬁ _mma_mm to a concept of “proper” equilibrium. Some

. . e ol el in ﬂ.rujsvﬂ 8 _an n_q,zu_.sq games

AL LZ Quantal Response Equilibrium

o In a quantal response equilibrium (QRE), players do not choose the best
_ - response with probahility one (as in Nash equilibrium). Instead, they “better-’

£

- respond,” and choose responses with higher expected payoffs with higher

probability. In practice, the QRE often uses a logit or exponentiated payoff
response function:

Pisy=exp (n 3 Pt} / 3 exp (0 3 Pls_puts, ),
Sy 3 ¢

where exp(x) denotes ¢* and the sums are taken over all strategies for —i
(all other players) and i. Intuitively, QRE says that players fix a strategy
and form beliefs about what others will do (P(s_})), and compute expected
payofis given those beliefs. Making this calculadon for each strategy gives a
protile of expected payoffs for each possible strategy. Then player { better
responds by choosing noisily according to the strategies’ expected payoffs,

‘The parameter X is 2 measure of their sensitivity to differences in expécted.
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payoffs.!® Note that since player Iis calculating P(s;), and others are too, the
system of equations is recursive: A player’s hehavior determines expected
payoffs, which determine other players’ behavior. When A = 0, players just
choose each strategy with the same equal probability. As A rises, they become
more and more responsive, converging to Nash equilibrium in which they
always choose the best response.”® Thus, Nash equilibrium is a kind of
“hyperresponsive” QRE.

T used to say in classes and seminars that, if John Nash had been a statis-
tician rather than a mathematician, he might have discovered QRE rather
than Nash equilibrivm. (Such an early discovery would have automatically
presolved the problem ofrefining away incredible Nash equilibria, which re-

quired the development, much later in the 1960s and 1970s, of subgame and

trembling-hand perfection.) When I mentioned this at a talk in Princeton
in the fall of 2001, some andience members grinned and nudged each other
{Nash was, after all, a hometown hero in Princeton). People later said they
were grinning and nudging because, unbeknownst to me, Nash had been
in the audience! Since Nash didn’t profest when he heard my counterfactual
speculation about his would-be early discovery of QRE, I Jater stretched the
truth and said “Nash didn’t deny that he would have discovered QRE.” 5till
later, in December 2001, 1 had z chance to meet Nash and asked him point
blank about QRE. He said he had been working on a similar stochastic best-
response model of bargaining just recently; so we can count him as recently
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be insulted, because the convention in that field is to give the writer the
benefit of the doubt.)

This appendix sketches some important design choices. To learn more,
see Friedman and Sunder (1993), Davis and Holt (1993), and Kagel and
Roth (1995). _

AL 2.1 Control, Measure, or Assume

Any variable can be evaluated in one of three ways: control, measurement,
or assumption.

Control means taking an action te affect the value of a variable, often
with a “manipulation check” to be sure the control worked. Induced value is
an important kind of control which creates preferences for acticns by asso-

- clating those actions with payoffs in-a currency that subjects value (typically

money, but sometimes grade points, ranking of points earned, and so forth).

Measurement refers simply to measuring the value of a relevant vari-
able through psychometric measures (“Describe how angry you are when
someone offers you $2 out of $10?7"), methods for measuring risk-aversion
{e.g., certainty equivalents) or probability judgments (scoring rules). Types

_of measurement that are less familiar in economics, but worth explor-

ing, include content analysis of videotapes, physiological measures such as
heartrate ar n.n_du_.:ﬂ skin response information u.....,::m:._bj ._‘nmxu ﬂD_J:nD.:

l@%%%ﬁwﬁrﬁ : 3 ic toward, a quantal response approach

Al.2 Experimental Design

‘The way in which an experiment is cenducted is unbelievably important. -

Just as all thoroughbred racehorses are descended from four horses, most

American experimental economics began in the 1960s and 1970s at a small .

number of institutions (particularly Caltech, Arizona, Purdue, and Texas

A&M) and grew slowly. (A similar effort occurred in parallel in Germany.)-

As a result, the experimental community is tight-knit and has established
clear conventions for ¢xperimental practice which permit a high degree

of comparability across data sets. Smith {1976) is an early rulebook which

also summarizes many regularities. For example, most articles include raw
data and instructions to enable readers to judge for themselves what was

learned. (If you asked a psychologist for data or instructions he or she might

1% Goeree and Holt (1999) use 1/ insiead to emphasize their interpretation of the naise as computa-
tional mistakes; when e 15 large, the mistake rate is high and players are very inscnsitive, and vice versa.

2MThis is not quite true, technically. The limit of a sequence of QREs as A increases can converge to
something that is not 2 Nash equiltbritm (see McRelvey and Palfrey, 1995},

et al,, 2002, in Chapter 4, msm Costa-Gomes, oamSmoa and ww.ommnm 2001,

- in Chapter 5), and even fMRI brain imaging (Smith et al,, 2002).

Assumption is pseudo-control in which the experimenter is willing to

© - . accept & maintained hypothesis about the value of a variable.

As an illustration of all three methods, consider the classic ECONOMmIC..

" experiments in which agents are endowed with costs and valuations for,

an object, and one would like to test theories of competitive equilibrium
(CE), which predict that prices will converge to the point where supply

" meets demand. One strategy is to hand out everyday objects, such as CD
- recordings or coffee mugs, and make an assumption about how much sub-

Jjects value them. This is generally a bad design because CE predictions are

.. very sensitive to the valuations of marginal traders, and the valuations are

not likely to be well understood by experimenters.?! Another strategy is to

1A beautiful exception, which proves the role, is the Kahneman, Knetsch, and Thaler (1990} exper-
iments with coffee mugs, They were interested not in prices at all, but only in the quantity of tade, and
in showing that aversion 10 Josses creates an “endowment cffect” that s present with everyday ohjects and
not with induced-value tokens. They were able to use everyday objects because they did not care about the
Jevel of homemade vatuations, but needed only to assume that mean valuations were similar in samples that
[randomly) did and did not receive mugs,




I m i .‘ ¥ It
instructions out loud is a common practice to establish “public knowledge™.
{e.g., what subjects know everyone else has been told, and what everyone -

else knows everyone else hasbeen toid), which is as close as we can practically
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measure valuations for each individual (using, say, the incentive-compatible
Becker-DeGroot—Marschak procedure} and then assume those measured
valuations represent the subjects” costs and reservation prices and constriet
demand and supply curves from the measurements. This is a defensible
procedure but has rarely been used (see Knez and Smith, 1987). A third
strategy is to “induce” or control valuations by making the objects of trade
valueless tokens, and telling subjects that they can trade tokens for specific
" money values. This form of induced valuation, first used by Chamberlin
(1948} and tirelessly refined by Vernon Smith beginning in 1956, is surely
the crux move in the development of experimental economics. Smith’s
later insistence on actually tying money payments to the induced valuations
led to credibility among nonexperimenters and reliability in actual behaw-
ior, which enabled exploration of extremely subtle hypotheses and rapid

Progress.

ALZ2 Instructions

Instructions teil subjects what they need to know. It is scientifically very use-
ful to have a clear instructional “script” that enables precise replication,

particularly across subject pools who may vary in language comprehension,’

obedience, intrinsic motivation, and so on. (Precise replication is surpris-
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a problem—when subjects are not told something about the environment
they are placed in, their default assumption may be wrong,

Here is an example. A large literature on “probability matching” studies
subjects (including nonhuman animals) making one of two choices (left L
and right R}. On each trial one of the levers is “armed” to deliver a reward
and the other delivers nothing. Subjects choose one lever and receive a
reward if it is armed. Typically, there is a chance # that L is armed and
1 — p that R is armed, and which lever is armed is determined independently of
previous trials. From the experimenter’s view, the rewards from choosing L,

.are independent Bernoulli trials, But what do subjects think? If they are not

told that the lever-arming process isindependentand identically distributed
(with fixed ), they might entertain an array of possibilities of how rewards
are delivered. It might be much more plausible, to a subject, that the.
experimenter is interested in whether they can figure out an ¢laborate
pattern of variation in which levers are armed rather than figure out that
L has an independent p chance each time. Empirically, subjccts typically

- “probability match” by choosing L on about ¢ of the trials. If subjects knew
-the process was independent and identically distributed, this would he

a mistake (they should always choose the arm with the higher p}. Does

- probability matching tell you that subjects are making a mistake, or that

they £ail to guess the strange (uninteresting) environment the experimenter

has placed them in? What the experimenter observes in a low-information
Lalaals

g

come to the common knowledge usually assumed in game theory.

The overwhelming convention in modern (post-1975) game theory ex-
periments is to explain how each sequence of moves by each player leads
to payoffs (including payoffs to other subjects, and also including asymmet-
ric information a la Harsanyi). This practice arose because experimenters
wanted to be sure that subjects had encugh information to compute an equi-

librium. (Earlier experiments on markets deliberately withheld information -
about values of others, to test the Adam Smith/Hayek hypothesis that, even-

if players knew only their own values, they could still converge to a Pareto-
efficient equilibrium.) More recently, learning models have been proposed
that do not always assume players have complete knowledge of all possible
payoffs. As an empirical matter, it is quite interesting to know how people
learn in these environments (since players may have poor information about
peyoffs in many naturally occurring situations). So some recent experiments
have deliberately withheld information about payoffs from the instructions
{e.g., Van Huyck, Battalio, and Rankin, 2001}. This design cheice zlso raises

. .Hrm guesses are hard to ohserve directly (withour additional measurement)
- itwill be difficult to conclude whether subjects are playing rationally or not.

probabilitymatching experimem tsacombimation of the subjecs revealed .

- perceptions about the statistical process of reward and their decision rule for-

choosing. Withholding statistical information is not necessarily a bad design
choice. But, by not revealing inforiation about the environment, there is
no guarantee that subjects will guess accurately what they are not told. Since

E

AL 23 Anonymiiy

If the subjects know the identity of the person they are bargaining with,
their knowledge might influence what they do for many reasons. They
might like the way the person looks and want to make them happy, or fear
retribution or embarrassment if they make a stingy offer and see the person
after the experiment. Unless these possibilities are precisely the focus of the
experiment, most of the experiments described in this book try to create
anonymity—sometimes to a dramatic degree—bhy making it as difficult as
possible for subjects to know precisely who they are playing with. Anonymity
is obviously nof used because it is lifelike. Itis used to establish a benchmark
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mm_mmu.mﬁ which the effects of knowing who you are playing can be measured,
if those effects are of interest.

AL 2.4 Matching Protocols and Repulation Building

Experiments are usually designed with several periods of w.._mw so subjects
can learn from experience. But if a pair of suhjects play ﬂomn_._ﬁmn‘ several
times, the possibility of “reputation building” can affect the mﬁ&ﬁnoa that
game theory makes. For example, in the ultimatum game it may pay for
a Responder to build up a reputation for being “tough” by rejecting large
offers in the first few periods, to “teach the proposer a lesson” and get larger
offers in later periods. Put more formally, when the same pair ﬁn.z, m_.oﬁ.uv mum
players play together several times, there may be game-theoretic mm.E.EuEw
for the repeated game that differ from the one-shot, stage-gamie mn_E._moH,EE.
Unless we are explicitly interested in the nature of reputation formation

and repeated-game strategies (as some experiments are}, this possibility is .

avoided by having subjects play with each other only once in an experimental
session.

There are various ways in which players can be matched with &mm_.ajwzﬁ
players in a stage game that is repeated. The most commen protocol is no-
repeat rematching (or a “stranger” design)-—players are never H.w.bpwﬂnﬁn.a
with a former match, to reduce the possibility of reputation building, (It is
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(1976) than money. Put differently, by inducing value using money pay- -
ments, the experimenter need rely only on the assurnptions that everybady -
likes having more money and nobody gets tired of having more of it. These
are safe assumptions, and substantally safer than figuring out whether some-
body is motivated by having their name posted if they did best (some people
might be embarassed by it}, is likely to give up if they are far behind when
payofls have a tournament structure, and so forth, (If you know anybody
who is tired of getting more money lct me know; I’ll take their leftovers!)
Paying subjects their earnings quickly became the norm in cxperimental
econontics (in sharp contrast to most of modern experimentsl psychology,
with important exceptions such as Ward Edwards and Amnon Rapoport).

‘Does it matter whether performance is rewarded, and how much? The evi-

dence is mixed. Experimenters should not abandon the practice of paying
performance-based incentives, but few results that disconfirm theory have

~ been overturned by paying more money. Smith and Walker (1993) review a

couple of dozen studies and argue that paying money reduces variance of re-
Sponses around a rational prediction (first noted by Dave Grether in a 1981

~working paper). Hogarth and I (Camerer and Hogarth, 1999) conducted a

more thorough review and draw several conclusions. Paying money doas re-
duce variatior and outliers, which may be particularly important in settings
that are sensitive to variation, such as “weaklink” coordination games (see

Chapter 7) or asset markets with potential for speculative bubbles. (In those
].

not known, by the way, whether norepeat rematching mnﬂpm_a\. n‘onm disable
reputation building. I suspect it does not, but more work on this is needed.)
[n 2 “no-contagion” design, players are never rematched, and are bms.wm
rematched with somebody who will be matched with somebody they will
later be matched with, and so forth. In random rematching, players are

- rematched randomly (so they may be rematched with their partner m,oﬂ
the previous period, but typically the probability of consecutive matches is
low and they do not know whether they are rematched anyway). In a mean-
matching or population protocol, each player plays every other player and
earns the average payoff from all those matches,

Al.2.5 Incentives

Vernon Smith {1962) reported the earliest experiments comparing the be-
havior of subjects who were rewarded in poinis with that of m..ﬁ_uunn_nm whose
points were converted into dollars that they were actuaily paid. 403.:“5. _”.u_u.
-served that subjects paid only in peints tended to approach competitive
equilibrium more erratically, and seemed to grow .Uoh.ma. with the experi-
ment faster than those who were paid money. He suggested that, although
people may have enough intrinsic motivation to earn lots of wwmbau .E%o_“
thetical rewards were typically more “erratic, cw_.mm_m_uﬁn. and easily satiated

tasksinvestigators shoutdcertatnty paymome JPayingmoneyimproved per-
g : ypay y.) raying yimp P

formance most reliably in Judgment and anm&o?imﬁbm tasks, when there

are returns to thinking harder (see also Hertwig and Qrtmann, 2001). But

. in tasks that are quite easy (“floor effecis”) or very hard (“ceiling effects™)

paying money usually does not matter. We also point out that there s no em-
pirical reason to obsess onlyabout money, because the effect of experience is
just as large. Labeling strategies, individual differences, and other variables
can have comparably large effects and should be Investigated further.
In.the 19808 a controversy erupted over whether money payments estab-

- . lished what Vernon Smith called “dominance,” which means that the money

at stake is enough to induce subjects to think hard. The controversy was ig-

_nited by Harrison (1989), who pointed out that the size of a deviation from

theory in payoff terms may be much lower than the deviation in the strategy
space. {The same point-~the “flat masimum cridque”—was made almost
two decades earlier, in 1973, by Von Winterfeldt and Edwards.) For exam-
ple, in a mixed-strategy equilibrium, if other players are using their mixture
strategies, then a subject has absolutely no fnancial incentive to play her
equilibrium mixture instead, regardiess of the level of money payoffs in the
game, Similarly, in firstprice private-value auctions, a bidder who overbids
by, say, $1 does not actually lose a doliar, Overbidding reduces her prospec-
tive earnings but raises the chance of winning the auction, and the net effect
may reduce her expected payoff by only pennies.
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Experimmenters never developed an idezl solution to the flat Bmig.c,a
problern. The critique did sensitize us to the need to worry about marginal
costs of deviation (and see Fudenberg and Levine, 1997) E.E to seek de-
signs with sieep marginal incentives where possible. .ﬁm,ow, E.DBNEE game
Responders, for example, the cost of the error from rejecting is exactly equal
to the deviation in strategy space, and is often very large.) Furthermore,
the fact that very large variations in stakes typically have only modest effects
muted criticisms that payolffs were not large enough. At _mmmﬁ two n_oN.a: stud-
ies have been done in foreign countries where wE.n:m.mdm power is so low
that modest sums by the standards of developed countries amount to sev-
cral weeks’ or months’ earnings. The results are generally very close to those
with smaller stakes, . .

Finally, Rob Kurzban mentioned a great example of poor reasoning in
a very high-stakes situation. In the final round om. the first wm:_o: wm the
popular Survivor television show, survivor Greg Buis was deciding which of
two others to vote for based on their answers in a simple number game.
{The winner got $1 million and the runnerup %Hc.o»ooo“ 30 the stakes are
huge.} The two finalists, Richard Hatch and Kelly Wigglesworth, were asked
to pick integers between I and 9 and the person whose uﬁaﬂmw was closest
to Buis’s would win. (Whether Buis mnﬂpw_@ committed S‘Ew number, or
simply used the contest to create an illusion of fairness, is Wm:,mw to H_C
Hatch chose 7. Astonishingly, Wigglesworth then chose 3, m.n:ohnm ﬂr‘mﬂ Is

dominated by choosing 6, because 6 :

6 or below whereas 3 would lose if Buis picked 6 and tie mm. he picked 5. If
Buis had picked randomly, by choosing 3 after Haich’s 7 gummﬁméwﬁr lost
an expected $160,000. And, unless one had 2 reason to' think Buis would

go high or low, picking 5 would have been a better choice by Hatch than 7. -

{Buis claimed he chose @ and so Hatch won the §1 million.) -

- AL2.6 Order Effects

| Experiments often involve two treatments, A and B. If they are always done

in the same order, denoted AB, then any difference in the two QQmm_HdmbG
might be due to the fact that A came first and B came mmnow_m (an “order
effect”). Order is “confounded with” {perfecty no‘E,nHw”_..mm with} the {reat
ment. This is easily controlied by running some sessionsin the reverse order,
BA, and including an order dummy variable in statistical analyses.

AL2.7 Controlling Risk Tastes

Even though subjects should be risk-neutral toward small _Eu gambles (Ra-
bix, 2000), it would be useful to have a procedure for creating wmwomm that
subjects are risk-neutral towards (i.e., so they are indifferent to the disper-
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sion of possible payoffs around a fixed mean). There és such a procedure—
the binary lottery procedure.

. In the binary lottery procedure, subjects are paid in lottery tickets,
-which are Jater used to determine their chance of winning a lottery for a
fixed prize (see Roth and Malouf, 1979). If players reduce compound lotter
ies to single-stage lotteries, they should be neutral toward mean-preserving

- spreads in their ticket distribution—that is, they should have linear util-
ity over tickets. For example, if they regard a 0.32 chance of winning fifty
tickets (and otherwise getting none) as the same as having sixteen tickets,
they are risk-neutral toward tickets. (In theory, the procedure can be ex-
tended to induce any shape of uiility function by transforming payoff units
to tickets nonlinearly; see Schotter and Braunstein, 1981, and Berg et al,,
1986.)

Unfortunately, there is little evidence that the binary lottery procedure

. .. works as it should in theory (and a couple of studies showing it does not
- work). For example, in direct tests, players who make choices with mone-

tary payoffs and players who make choices with lottery ticket payoffs exhibit
the same patterns, so ihe binary lottery procedure does not change ap-
parent risk-aversion over money into risk-neutrality over tickets (Camerer
and Ho, 1994; Selten, Sadrieh, and Abbink, i999). On the other hand, VYan
Huyck and Battalio (1999) found that players behaved consistently with risk-
neutrality over tickets {though see their footmote 9 for an opposite result)

careful study, Prasmikar (1999) found that risk-aversion coef
ficients estimated from choices among gambles over tickets were close to
their predicted coefficient values. The method worked best for the minority
of subjects who obeyed reduction of compound lotteries, .

It is surprising that many experimenters use the binary lottery proce-
dure despite so little careful evaluation of when it do esinduce risk-neutrality
(and given the evidence that it often doesn’t). To paraphrase G, B, Shaw's
wisecrack about marriage, faith in the procedure seems to be a trivrnph
of hope over data. There are two alternatives to trying to induce risk tastes:
assume risk-newutrality, or measure risk tastes over money independently and
use those measures to calibrate an individual subject’s risk preferences in a
game (which several experimenters have done}. In any case, it would be

_good to see more careful research (4 la Prasnikar, 1999) establishing when

the procedure works and when it does not,

AL 2.8 Within-Subjects and Between-Subjects Design

In a “within-subjects” design, a single subject is observed in different treat-

‘ments. (The subject serves as “her own control group™) In a “between-

subjects” design—the norm in experimental economics—different subjects
are tested in treatments A and B, Statistical variation across the subjects
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then muddies the waters of what is observed by comparing A and B. Within-

subject designs are more statistically powerful than between-subject ﬂmmmmdw
because they automatically control for individual differences, which are

. often a large source of variation, and hence allow the effect of a treatment to

B

shine through when the nuisance of individual memmnm.ﬂnn m.m nozqomnn_ for.

There is a curious bias against withinsubjects designs in experimental
economics {not so in experimental psychology). I don't know why there
is a bias, and I can’t think of a compelling reason always to mmnwﬁé. mﬂnw
designs. One possible reason is that exposing m:.e.mnﬂm‘ﬁ Bc_mw_.n nOﬁmEomm
heightens their sensitivity to the differences in nonnrnomsw.‘ This hypothesis
can be tested, however, by comparing results from within- and between-
subjects designs, which is rarely done.

AlL29 Experimeirics

“Experimetrics” are econometric technigues customized to experimental

applications. Although P'm an amateur econometrician, I am a huge fan of

experimetrics. Fhe next generation of experimenters should feel obliged to

use the very latest inferential tools—the biest microscopes—to see patterns
in data as clearly as possible, The work by Crawford, E;.Omﬁﬂ. McEelvey
and Palfrey, Stahl, and Van Huyck and Battalio described in this book sets a
high standard other experimenters should emulate.

optimal endogeneous experimental design (e.g., EFGamal, McKelvey, and -

Palfrey, 1993). In many experiments, the experimenter has one or more

. hypotheses that she can put prior probabilities on. A oim_u prior, wum spec- .
ification of the hypotheses, can be used to compute the E.mOHSmE.oD ﬁ_.__.ﬁ.
{in the sense of dispersion of posterior probabilities wm_mﬁ:.ﬁ to Q._mﬂm_.mwcm
of priors) of different experimental design parameters. This motivates the.

choice of “optimally informative” design parameters. Furthermore, because

- of increases in computing power, for the first time in human history we

can alter the experimental design in real time—while ms_u.u.m...n_“m, are wait-
ing, for seconds rather than days—to optimize the E.doﬂuﬁ of anamco:
coliected in an experiment. (Seen this way, all previous mxﬁmza_w:ﬁ_ de-
signs are heuristic approximations to endogeneously optimized designs.)

-Information-optimized designs have rarely been used. The younger gener-

ation should embarass us older folks by taking them up with a vengeance.

Dictator, Ultimatum, and Trust Games

IN 1982, GUTH, SCHMITTBERGER, AND SCHWARZE reported the kind of em-
pirical finding that surprises only economists. They studied an “ultimatum”
game in which one player, the “Proposer,” makes a take-it-or-leave it offer,
dividing some amount of money between herself and another person. If

1L, Te “Responder,” accepts the division, then both peo-

ple earn the specified amounts. If the Responder rejects it, they both get
-nothing. The'ultimatum game could hardly be simpler. If Responders max-
© imize their own money payoffs, they should accept any offer, If Proposers

also maximize and expect Responders to maximize, they should offer the
smallest amount.

In experiments, Proposers offer an average of 40 percent of the money
(many offer half) and Responders reject small offers of 20 percent or so
half the time. The data falsify the assumption that players maximize their

‘own payofis as clearly as experimental data can. Every methodological ex-

planation you can think of (such as low stakes) has been carefully tested and

- cannot fully explain the results,

Since the equilibria are so simple to compute (the Responder’s move
is just a choice of a payoff allacation), the ultimatum game is z crisp way
to measure social preferences rather than a deep test of sirategic thinki ng
(see Marwell and Schmitt, 1968). Measuring social preferences in money
terms Is important because concepts such as fairness and trust figure promi-
nently in private negotiation and public policy. But many cynics (especiaily
economists) think fairness is simply a rhetorical term used by people who
deserve the short end of the stick for trying to get more, and that people
will not sacrifice much to punish unfairness or reward fajrness. Asg George
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