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Abstract

Sixteen subjects’ brain activity were scanned using fMRI as they made choices, expressed beliefs,
and expressed iterated 2nd-order beliefs (what they think others believe they will do) in eight games.
Cingulate cortex and prefrontal areas (active in “theory of mind” and social reasoning) are differ-
entially activated in making choices versus expressing beliefs. Forming self-referential 2nd-order
beliefs about what others think you will do seems to be a mixture of processes used to make choices
and form beliefs. In equilibrium, there is little difference in neural activity across choice and belief
tasks; there is a purely neural definition of equilibrium as a “state of mind.” “Strategic 1Q,” actual
earnings from choices and accurate beliefs, is negatively correlated with activity in the insula, sug-
gesting poor strategic thinkers are too self-focused, and is positively correlated with ventral striatal
activity (suggesting that high 1Q subjects are spending more mental energy predicting rewards).
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1. Introduction

Game theory has become a basic paradigm in economics and is spreading rapidly in
political science, biology, and anthropology. Because games occur at many levels of detail
(from genes to nations), game theory has some promise for unifying biological and social
sciences (Gintis, 2003).

The essence of game theory is the possibilitgtoditegic thinking: Players in a game
can form beliefs about what other players are likely to do, based on the information players
have about the prospective moves and payoffs of others (which constitute the structure of
the game). Strategic thinking is central to game theory, but is also important in market-
level phenomena like sighaling, commodity and asset market information aggregation, and
macroeconomic models of policy setting.

Despite the rapid spread of game theory as an analytical tool at many social levels, very
little is known about how the human brain operates when thinking strategically in games.
This paper investigates some neural aspects of strategic thinking using fMRI imaging. Our
eventual goal is to build up a behavioral game theory that predicts how players choose
and the neural processes that occur as they play. The data can also aid neuroscientific
investigations of how people reason about other people and in complex strategic tasks.

In our experiments, subjects’ brain activity is imaged while they play eight 2-player
matrix games which are “dominance-solvaBle’that is, iterated deletion of dominated
strategies (explained further below) leads to a unique “equilibrium” in which players’ be-
liefs about what other players will do are accurate and players best respond to their beliefs.
(In equilibrium, nobody is surprised about what others actually do, or what others believe,
because strategies and beliefs are synchronized, presumably due to introspection, commu-
nication or learning.)

The subjects perform three tasks in random orders: They make choices of strategies
(task C); they guess what another player will choose (“beliefs,” task B); and they guess
what other players thinthey will choose (“2nd-order beliefs,” task 2B). Every player being
scanned plays for money with another subject who is outside of the scanner.

In a game-theoretic “equilibrium,” beliefs are correct, and choices are optimal given
beliefs. One way for the brain to reach equilibrium is for neural activity in@he3, and
2B tasks to be similar, since at equilibrium all three tasks “contain” the others, i.e. choice
is a best response to belief, so the choice task invokes a belief formation. Any difference in
activation across the three conditions is suggestive that different processes are being used to
form choices and beliefs. In fact, as we show below, in experimental trials in which choices
and beliefs are in equilibrium, there is little difference in activity in making a choice and
expressing a belief; so this provides a purely neural definition of equilibrium (as a “state of
mind”). Differences in activity across the three tasks might help us understand why players
are out of equilibrium, so these differences are the foci of most of our analyses.

The first focus is the difference between making a choice and expressing a belief
(i.e., the comparison between behavior and fMRI activation inGhend B conditions).

1 In a dominance-solvable games, if players do not play dominated strategies, and guess that others will not,
iteratively, then the result is an equilibrium configuration of strategy choices by players, and beliefs about what
others will do, which are mutually consistent.
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If choices are best-responses to beliefs, then the thinking processes underlying choice and
belief formation should highly overlap; choice and belief are like opposite sides of the same
coin. (Put differently, if you were going to build brain circuitry to make choices and form
beliefs, and wanted to economize on parts, then the two circuits would use many shared
components.)

In contrast, disequilibrium behavioral theories that assume limited strategic thinking
allow players to choose without forming a belief, per se, sodhahd B activity can differ
more significantly. For example, Camerer et al. (2004a, 2004b) present a theory of limited
strategic thinking in a cognitive hierarchy (building on earlier appro&jhkstheir theory
some “0-step” players just choose randomly, or use some algorithm which is thoughtful
but generates random choice—in any case, they will spend more energy on choice than
belief. “One-step” thinkers act as if they are playing 0-step players, so they compute a
choice but do not think deeply while forming a belief (e.g., they do not need to look at the
other player’s payoffs at all since they do not use these to refine their guess about what
others will do). Two-step players think they are playing a mixture of 0- and 1-step players;
they work harder at forming a belief, look at other players’ payoffs, and use their belief
to pick an optimal choice. Models of this sort are precise (more statistically precise than
equilibrium theories) and fit most experimental data sets from the first period of a game
(before learning occurs) better than Nash equilibrium does (Camerer et al., 2004a). These
limited-thinking theories allow larger differences in cognitive activity between the acts of
choosing a strategy anedxpressing a belief about another player’s strategy than equilibrium
theories do. A 1-step player, for example, will look at all of her own payoffs and calculate
the highest average payoff when making a choice, but when guessing what strategy another
player will choose she can just guess randomly. Such a player will do more thinking when
choosing than when stating a belief. This possible difference in processing motivates our
analysis of differential brain activity during th@ and B tasks?

The second focus of the analysis is on the difference in activity while forming beliefs
in the B task and 2nd-order beliefs in th&82ask. One way agents might form 2nd-order
beliefs is to use general circuitry for forming beliefs, but apply that circuitry as if they
were the other player (put themselves in the “other player’s brain”). Another method is
self-referential: Think about what they would like to choose, and ask themselves if the
other player will guess their choice or not. These two possibilities suggest, respectively,
that theB and 2B conditions will activate similar regions, or that tiieand 2B regions
will activate similar regions.

Besides contributing to behavioral game theory (see Camerer, 2003), imaging the brain
while subjects are playing games can also contribute to basic social neuroscience (e.g.,

2 see Nagel, 1995; Stahl and Wilson, 1994; Costa-Gomes et al., 2001; Hedden and Zhang, 2002 and Cai and
Wang, 2004.

3 An ideal test would compare activity of subjects who are capable of performing different thinking steps
across games of different complexity. For example, a low-step thinker should show similar activity in simple and
complex games (because they lack the skill to think deeply about complex games). A high-step thinker would
stop at a low-level choice in a simple game (whérand higher steps of thinking prescribe the same choice)
but would do more thinking in complex games. Unfortunately, we have not found a solid psychometric basis to
“type-cast” players reliably into steps of thinking; when we can do so, the comparison above will provide a useful
test.
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Adolphs, 2003). Cognitive social neuroscientists are interested in spectrum diéditders
autism, in which people lack a normal understanding of what other people want and think.
The phrase “theory of mind” (ToM) describes neural circuitry that enables people to make
guesses about what other people think and desire (sometimes called “mind-reading” or
“mentalizing”; e.g., Siegal and Varley, 2002; Gallagher and Frith, 2003; Singer and Fehr,
2005).

Using game theory to inform designs and generate sharp predictions can also provide
neuroscientists interested in ToM and related topics with some new tools which make clear
behavioral predictions and link tasks to a long history of careful theory about how rational
thinking relates to behavior.

In this spirit, our study extends ToM tasks to include simple matrix games. While there
has been extensive research into first order beliefs: the simple consideration of another
person’s beliefs, there has been very little investigation of 2nd-order beliefs, especially
when they are self-referential—i.e., what goes on in a person’s brain when they are trying
to guess what another person thirkey will do?

1.1. Why study choices, beliefs and 2nd order beliefs?

Figure 1 shows the exact display of a matrix game (our game 3) that row players saw in
the scanner, in theRtask where they are asked what the column player thinks they will
do2 The row and column players’ payoffs are separated onto the left and right halves of
the screen (in contrast to the usual presentafidRdw payoffs are in a submatrix on the
left; column player payoffs are in a submatrix on the right (which was, of course, explained
to subjects).

The Fig. 1 game can be “solved” (that is, a Nash equilibrium can be computed) by three
steps of iterated deletion of dominated stratedi@se row player’s strateg¢ is domi-
nated by strateg¥ (i.e., regardless of what the column player daggjves a higher payoff
than C); if the row player prefers earning more she will never cho6séf the column
player guesses that row will never play (the dominated strategy is “deleted,” in game
theory language—i.e., the column player thir&swill never be played by an earnings-
maximizing row player), then strated3B becomes a dominant strategy for the column

4 A“spectrum” disorder is one which spans a wide range of deficits (inabilities) and symptoms—it has relatively
continuous gradation. This suggests a wide range of neural circuits or developmental slowdowns contribute to the
disorder, rather than a single cognitive function.

5 The placeholder letterc” is placed in cells and rows which are inactive in an effort to create similar amounts
of visual activity across trials, since matrices had different numbers of entries.

6 The split-matrix format was innovated by Costa-Gomes et al. (2001), who used it to separate eye movements
when players look at their own payoffs or the payoffs of others, in order to judge what decision rules players were
using (see also Camerer et al., 1994). The matrices are more complex than many fMRI stimuli but we chose to
use affine transformations of the CGCB matrices to permit precise comparability of our choice data to theirs. Our
current study did not track eye movements but it would be simple to use this paradigm to link eye movement to
fMRI activity, or to other temporally-fine measures of neural activity.

7 A strictly dominated strategy is one that has a lower payoff than another strategyefippossible move by
one’s opponent; Aveakly dominated strategy has weakly lower payoffs than another strategy against all strategies
and strictly lower payoffs against at least one of the opponent’s strategies. A dominant strategy is one that gives
the highest possible payoff against all of the opponent’s strategies.
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8060 Experiment

What does the other player think you are choosing?

Player 1's Payoffs Player 2's Payoffs
AA BB cC DD AA BB cC DD
@ 43 86 x x 10 37 3 x
94 57 X X 44 650 X X
68 39 X X 73 6 X X
@ x x x x x x x x

Fig. 1. Athree-step game used in the experiment, as presented in the scanner (gaime@ninated. Deleting

makesAA dominated. DeletingA andC makesA dominant. The unique Nash equilibrium is therefose BB).

Only 31% and 61% (respectively) chose these strategies (see Appendix A). The Camerer—-Ho CH model (see text)
with T = 1.5 predicts 7% and 55%.

player. If the row player guesses that the column player guesses she (the row player) will
never playC, and the row player infers that the column player will respond BBhthen
strategyA becomes dominant for the row player. Of course, this is a long chain of reason-
ing which presumes many steps of mutual rationality.

Putting aside the fMRI evidence in our study, simply comparing choices, beliefs and
iterated beliefs as we do could be interesting in game theory for a couple of reasons. A com-
mon intuition is that higher-order beliefs do not matter. But Weinstein and Yildiz (2004)
show that in games which are not dominance-solvable, outcomes depend sensitively on
higher-order beliefs (if they are not restricted through a common knowledge assumption
a la Harsanyi). Empirically, their theorems imply that knowing more about higher-order
beliefs is necessary to guess what will happen in a game.

Goeree and Holt's (2004) “theory of noisy introspection” assumes that higher-order be-
liefs are characterized by higher levels of randomness or uncertainty. Increased uncertainty
might appear as lower levels of overall brain activity (or higher, if they are thinking harder)
for 2nd-order beliefs compared to beliefs and choices. Furthermore, increased uncertainty
should be manifested by poorer behavioral accuracy for higher-order beliefs.

Second-order beliefs also play a central role in games involving deception. By defi-
nition, a successful deception requires a would-be deceiver to know she will make one
choice, A, but also believe the other player thinks she will makeiféerent choice, B.
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The capacity for deception therefore requires a player to hold “false 2nd-order beliefs” in
mind—éhat is, to plan choices which are different from what (you think) others think you
will do.

Finally, second-order beliefs also play an important role in models of social preferences,
when a player’s utility depends directly on whether they have lived up to the expectations
of others (see Rabin, 1993). Dufwenberg and Gneezy (2000) studied trust games in which
players could pass up a sure amowrdnd hope that a second player gave them a larger
amounty from a larger sum available to divide. They found that the amount the second
player actually gave was modestly correlated (0.44) with the amount the second player
thought the first player expected (i.e., the second player’s 2nd-order belief). The second
player apparently felt some obligation to give enough to match player 1's expectations.
These kinds of emotions require 2nd-order beliefs as an input.

Trying to discern what another person believes alyoutis also important in games
with asymmetric information, when players have private information that they know others
know they have, and in games where a “social image” might be important, when people
care what others think about them (in dictator and public goods games, among others).

1.2. Neuroeconomics, and what it is good for

This paper is a contribution to “neuroeconomics,” a rapidly-emerging synthesis (and
subject of this special issue) which grounds details of basic economic processes in facts
about neural circuitry (Camerer et al., 2004c, 2005; Zak, 2005; Glimcher and Rustichini,
2004).

Neuroeconomics is an extensiontehavioral economics, which uses evidence of lim-
its on rationality, willpower and self-interest to reform economic theory; neural imaging is
just a new type of evidence. Neuroeconomics is also a new pexperfimental economics,
because it extends experimental methods which emphasize paying subjects according to
performance, and tying predictions to theory, to include studies with animals, lesion pa-
tients (and “temporary lesions” created by TMS), single-neuron recording, EEG and MEG,
psychophysiological recording of heart rate, skin conductance, pupil dilation, tracking eye
movements, and PET and fMRI imaging (McCabe and Smith, 2001). Neuroeconomics is
also part ofcognitive neuroscience, since these studies extend the scope of what neurosci-
entists understand to include “higher-order cognition” and complex tasks involving social
cognition, exchange, strategic thinking, and market trading that have been the focus of
microeconomics for a long time.

8 Whether or not a person can understand false beliefs is a key component of theory of mind and is also a
test used to diagnose autism. In a classic “Sally—Anne” task, a subject is told that Sally places a marble in her
basket and leaves the room. Anne then moves the marble from the basket to a box and also leaves the room.
Sally re-enters the room. The subject is then asked where Sally will look for her marble. Since the child believes
that the marble is in the box, she must be able to properly represent Sally’s different befaée-laelief—to
answer correctly, that Sally will look in the basket. Most children switch from guessing that Sally will look for
the marble in the box (a selfreferentially-grounded mistake) to guessing that she will be looking in the basket at
around 4 years old. Autistic children make this switch later or not at all. See Gallagher and Frith (2003) for more
detail.

9 However, about a third of the player 2's gave less than they thought others expected.
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One reaction to the idea of neuroeconomics is that economic models do not need to
include neural detail to make good predictions, because they are agnostically silent about
whether their basic assumptions are actually satisfied, or simply lead to outcomes “as if”
the assumptions were trd@ As a result, one can take a conservative or radical view of
how empirical studies like ours should interact with conventional game theory.

The conservative view is that neural data are just a new type of evidence. Theories
should get extra credit if they are consistent with these data, but should not be penalized if
they are silent about neural underpinnings.

The radical view is that all theories, eventually, will commit to precisely how the brain
(or some institutional aggregation, as in a firm or nation-state’s actions) carries out the
computations that are necessary to make the theory work. Theories that make accurate
behavioral predictions and also account for neural detail should be privileged over others
which are neurally implausible.

Our view leans toward the radical. It cannot be bad to have theories which predict
choices from observable structural parameters and wdlghspecify precise details of
how the brain creates those choices. (If we could snap our fingers and have such theories
for free, we would.) So the only debatable question is whether the cognitive and neural data
availablenow are good enough to enable ushEgin to use neural feasibility as a central
way to judge the plausibility of as-if theories of choice.

We think this is a reasonable time to begin using neural activation to judge plausibility
of theories because there are many theories of choice in decision theory and game the-
ory, and relatively few data to sharply separate those theories. Virtually all theories appeal
vaguely to plausibility, intuition, or anecdotal evidence, but these are not scientific stan-
dards. Without more empirical constraint, it is hard to see how progress can be made when
there are many theories. Neural data certainly provide more empirical constraint.

Furthermore, in many domains current theoidesnot make good behavioral predic-
tions. For example, equilibrium game theories clearly explain many kinds of experimental
data poorly (e.g., Camerer, 2003). Studying cognitive detail, including brain imaging, will
inevitably be useful for developing new concepts to miadtéer predictionst!

An argument for the imminent value of neural data comes by historical analogy to recent
studies which track eye movements when subjects play games Camerer et al. (1994); Costa-
Gomes et al. (2001) (CGCB); Johnson et al. (2002); Costa-Gomes and Crawford (2004);
Johnson and Camerer (2004). When payoffs are placed on a computer screen, different
algorithms for making choices can be tested as joint restrictions on the choices implied by

10 The “as if” mantra in economics is familiar to cognitive scientists in the form of David Marr’s influential
idea that theories can work at three levels—‘computational” (what an economist might call functional or as-if);
“algorithmic” or “representational” (what steps perform the computation); and “implementation” or hardware
(see Glimcher, 2003 for a particularly clear discussion). Ironically, Marr’s three-level idea licensed cognitive
scientists to model behavior at the highest level. We invoke it to encourage economists who operate exclusively at
the highest level, to commit game theory to an algorithmic view, to use evidence of brain activity to make guesses
about algorithms and to therefore discipline ideas about highest-level computation.

11 Furthermore, neuroeconomics will get done whether economists endorse it or not, by smart neuroscientists
who ambitiously explore higher-order cognition carefully but without the benefit of decades of training about how
delicate theoretical nuances might matter and which can guide design. Engaging with the energetic neuroscientists
is therefore worthwhile for both sides.
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those algorithmsand whether players look at the payoff numbers they need to execute an
algorithm.

Eye tracking has been used in three published studies to separate theories which make
similar behavioral predictions. Camerer et al. (1994) and Johnson et al. (2002) studied
three-period bargaining games in which empirical offers are somewhere between an equal
split and the subgame perfect self-interest equilibrium (which requires subjects to “look
ahead” to future payoffs if bargaining breaks down in early periods; see Camerer, 2003,
Chapter 4). They found that in 10—-20% of the games subjects literally did not glance at the
possible payoff in a future period, so their offers could not be generated by subgame perfect
equilibrium. Johnson and Camerer (2004) found that the failure to look backward, at the
possible payoffs of other players in previous nodes of a game, helped explain deviations
from “forward induction.” CGCB found that two different decision rules, with very similar
behavioral predictions about chosen strategies, appeared to be used about equally often,
when only choices were used to infer what rules were used. But when lookup information
was used, one rule was inferred to be much more likely. If CGCB had only used choices
to infer rules they would have drawn the wrong conclusion about what rules people were
using.

Those are three examples of how inferences from choices alone do not separate theories
nearly as well as inferences from both choiead cognitive data. Perhaps neural activity
can have similar power as attentional measures, as evidence accumulates and begins to
make sense.

The hard part is creating designs that link neural measures to underlying latent vari-
ables. Our work is guided by the “design triangle” illustrated in Fig. 2. The triangle shows
experimental stimuli (on the top of the triangle) which produce measured output—brain
activation, skin conductance, eye movements, and so on (lower left)—which can, ideally,
be interpreted as expressions of underlying variables or algorithms which are not directly
observable (lower right). For the experiments reported in this paper, the underlying con-
structs which are illuminated by brain activity are hypotheses about the decision processes
players are using to generate choices and beliefs.

Keep in mind that while brain pictures like those shown below highlight regions of ac-
tivation, we are generally interested not just in regions but in neimalitry—that is, how
various regions collaborate in making decisions. Understanding circuitry requires a variety
of methods. fMRI methods are visually impressive but place subjects in an unnatural (loud,
claustrophobic) environment and the signals are weak so many trials are needed to average
across. Neuroscience benefits from many tools. For example, looking at tissue in primate
brains helps establish links between different regions (“connectivity”). Other methods in-
clude psychophysiological measurement (skin conductance, pupil dilation, etc.), studies of
patients with specialized brain damage, animal studies, and so forth. Neuroscience is like
detective work on difficult cases: There is rarely a single piece of evidence that is definitive.
Instead, the simplest theory that is consistent with the most different types of evidence is
the one that gets provisionally accepted, and subject to further scrutiny. This paper should
be read in this spirit, as extremely tentative evidence which will eventually be combined
with many new studies to provide a clear picture.
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0-step thinking
1-step thinking
Equilibrium C=br(B)

Fig. 2. Neureconomics design: Designs relate stimuli (top) to latent variables or algorithms (right) which gener-
ate interpretable activation (left). Experimental economics studies link stimuli (top) and variables (right). Many
neuroscience studies just report links between stimuli (top) and activation (left). The neuroeconomics challenge
is to make all 3 fit.

2. Neural correlates of strategic thinking
2.1. Methods

Sixteen subjects were scannédne at a time, in a 3T Siemens Trio scanner at Caltech
(Broad Imaging Center) as they perform@dB and 2B tasks across each of eight games.

The games and order of the three tasks were fixed across subjects. Appendix A shows the
games (which are transformations of games in CGCB), the instructions, and give some
methodological details.

In keeping with healthy experimental economics convention, both players were finan-
cially rewarded for one task and game that was chosen at random after they came out of
the scanner. If a choice task was chosen, then the choices of both players determined their
payoffs ($.30 times experimental points). If a belief or 2nd-order belief task was chosen
for payment, a player earned $15 if her beliefnatched the other player’s choice, or $15
if her 2nd-order belief B matched the other player’s belief.

12 To experimental social scientists, 16 seems like a small sample. But for most fMRI studies this is usually an
adequate sample to establish a result because adding more subjects does not alter the conclusions much.
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Pairs of subjects were recruited on campus at Caltech through SSEL lab recruiting soft-
warel3 One subject performed the tasks in the scanner, as the row player, while the other
performed them in an adjacent room, as the column player.

We give only a quick sketch of fMRI technique here. Methods of measurement and
analysis are extremely complex and still evolving. Appendix A has more detail (or see,
e.g., Huettel et al., 2004).

Each subiject first has their brain “structurally scanned” (as in medical applications) to
establish a sharper picture of the details of brain anatomy for six minutes. Then each subject
proceeds through a series of screens (like Fig. 1) one at a time, at their own pace (response
times averaged 8-25 seconds; see Appendix A). They make choices and express beliefs by
pressing buttons on a box they hold in their hand. After each response is recorded, there
is a random lag from 6—10 seconds with a “fixation cross” on a blank screen to hold their
visual attention in the center of the screen and allow blood flow to die down. The entire set
of tasks took from 7 to 15 minutes.

The scanner records 32—34 “slices” of brain activity every 2 seconds (one “TR”). Each
slice shows blood flow in thousands of three-dimensional “voxels” which are83« 3
millimeters in size. Our analysis is “event-related,” which means we ask which voxels
are unusually active when a particular stimulus is on the screen. The analysis is a simple
linear regression where dummy variables are “on” when a stimulus is on the screen and
“off” otherwise. This “boxcar” regression is convolved with a particular function that is
well-known to track the hemodynamic response of blood flow. The regression coefficients
of activity in the BOLD (blood-oxygenation level dependent) signal in each voxel tell us
which voxels are unusually active. Data from all subjects are then combined in a random
effects analysis. We report activity which is significantly different from chance gt a
value< 0.001 (a typical threshold for these studies), and for clusters of at least 5 adjacent
voxels where activity is significant (with exceptions noted below).

2.2. Behavioral data

Before turning to brain activity, we first describe some properties of the choices and
expressed beliefs. Appendix A shows the relative frequencies of subject choices, expressed
beliefs, and expressed 2nd-order beliefs, in each game.

Table 1 shows the percentages of trials, for games solvable in different numbers of steps
of deletion of dominated strategies, in which players made equilibrium choices. The table
includes the choice data from CGCB'’s original study using these games. First note that the
percentages of subjects making the equilibrium strategy choice in our study is similar for
row and column players, who are respectively, in and out of the scanner. (None of the row—
column percentages are significantly different.) However, equilibrium play in our games is

13 since Caltech students are selected for remarkable analytical skill, they are hardly a random sample. Instead,
their behavior is likely to overstate the average amount of strategic thinking in a random population. This is useful,
however, in establishing differential activation of regions for higher-order strategic thinking since the subjects are
likely to be capable of higher-order thinking in games that demand it.
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Table 1

Percentages of equilibrium play across games and player type

Type of game Row player  Column player = Row+column CGCB  New data— CGCB
(inscanner)  (out of scanner) mean mean z-statistic

2 x 2, row has a 0.75 061 068 093 —3.21*

dominant decision

2 x 4, row has a 0.56 Q72 065 096 —3.24*

dominant decision

2x 2,columnhasa 0.50 061 056 080 —2.46*

dominant decision

2x4,columnhasa 0.63 056 059 Q70 —-0.94

dominant decision

2 x 3, 2 rounds of 0.47 058 053 069 —-1.49

iterated dominance

3 x 2, 3rounds of 0.22 022 022 022 -0.02

iterated dominance

less frequent than in CGCB’s experiment, significantly so in the simplest gihSisce

the frequencies of equilibrium play by the in-scanner row player and the out-of-the-scanner
column player are similar, the lower percentage of equilibrium play in our experiments is
probably due to some factor other than scaniihg.

Table 2 reports the frequency of trials in whi¢h= br(B) (wherebr(B) denotes the
best response to beligf), B = br(2B), C = 2B, and in which all three of those condi-
tions are met simultaneously (our stringent working definition of “an equilibrium trial”
hereafter).

Equilibrium trials are generally rare (23%). Comparing the match of beliefs and choices
across categories, a natural intuition is that as players reason further up the hierarchy from
choices, to beliefs, to iterated beliefs, their beliefs become less certain. Therefore, 2nd-
order beliefs should be less consistent with beliefs than beliefs are with choices, and 2nd-
order beliefs and choices should be least consistent (Goeree and Holt, 2004). (In terms
of the Table 2 statistics, the three rightmost column figures should decline from left to

14 0Of course, eliciting choices, beliefs, and 2nd-order beliefs in consecutive trials might affect the process of
choice, perhaps promoting equilibration. But the close match of our obs€rvebr (B) rate to the Costa-Gomes

and Weizsacker's (2004) rate, and the lower rate of equilibrium choices compared to CGCB's subjects (who only
made choices) suggests the opposite. Also keep in mind that our subjects report a single strategy as a belief,
and are rewarded if their guess is exactly right, which induces them to report the mode of their distribution. (For
example, if they thinkAA has a p chance aBB has a 1 p chance they should s#A if p > 0.5.) Costa-Gomes

and Weizsacker elicited a probability distribution of probability across all possible choices. Their method is more
informative but we did not implement it in the scanner because it requires a more complex response which is
difficult and time-consuming using button presses.

15 The difference between our rate of conformity to equilibrium choice and CGCB's may be due to the fact
that beliefs are elicited, although one would think that procedure would increase depth of reasoning and hence
conformity to equilibrium. We think it is more likely to result from a small number players who appeared to
act altruistically, trying to make choices which maximize the total payoff for both players (which often leads to
dominance violation—e.g., cooperation in prisoners’ dilemma games). Since this kind of altruism is surprisingly
difficult to pin down carefully, we continue to use all the data rather than to try to separate out the altruistically-
minded trials.



M. Bhatt, C.F. Camerer / Games and Economic Behavior 52 (2005) 424459 435

Table 2
Frequencies of choice and belief matching for the row player
Type of game Equilibrium C =bhr(B) B =br(2B) C=2B

(all 3 conditions hold)

Row has dominant

strategy ®1 066 059 069
Column has dominant 0.44 075 Q75 088
strategy

2 x 3 game with two

steps of dominance .03 063 066 069
3 x 2 game with three 0.06 059 053 075
steps of dominance

Overall Q23 066 063 075

right.) That intuition is wrong for these data. The fractions of trials in whick: br(B),

and B = br(2B) are about the same. The number of subjects who make optimal choices
given their belief C = br(B)) is only 66%. This number may seem low, but it is similar

to statistics reported by Costa-Gomes and Weizsacker (2004) (who also measured beliefs
more precisely than we did).

More interestingly—and foreshadowing brain activity we will see later—the frequency
with which choices match 2nd-order beligf§ = 2B) is actuallyhigher, for all classes
of games, than the frequency with whigh= br(2B) (75 versus 63% overall). This is a
hint that the process of generating a self-referential iterated belief might be similar to the
process of generating a choice, rather than simply iterating a process of forming beliefs to
guess what another player believes about oneself.

Given these results, and the success of parametric models of iterated strategic thinking
(e.g., Camerer et al., 2004a), an obvious analysis is to sort subjects or trials into 0, 1, 2
or more steps of thinking and compare activity. But the current study was not optimally
designed for this analysis, so analyses of this type are not insidftful.

2.3. Differential neural activity in choice (C) and belief (B) tasks

In cognitive and neural terms, 0- and 1-step players doesst to use the same neural
circuitry to make choices and to express beliefs. Thus, any difference in neural activation

16 Comparing trials sorted into low-steps of thinking (0 or 1) and high steps shows very little differential acti-
vation of high relative to low in either choice or belief tasks, and substantial activation of low relative to high in
cingulate and some other regions. The a priori guess is that higher thinking steps produce more cingulate (con-
flict) activation, so we do not think the sorting into apparent 0- and 1-step trials is accurate enough to permit
good inferences at this stage. A design tailored for this sort of “typecasting” analysis could be used in future
research. There are many handicaps from the current design for linking inferred thinking steps to brain activity.
One problem is that in many games, choices of higher-step thinkers coincide. Another problem is that it is difficult
to weed out altruistic choices, so they are typically misclassified in terms of steps of thinking which adds noise.
A cross-subject analysis (trying to identify the typical number of thinking steps for each subject) did not work
because individual subject classification is noisy with only eight games (see also Chong et al., 2005). It is also
likely that these highly skilled subjects did not vary enough in their thinking steps to create enough variation in
behavior to pick up weak behavior-activation links.
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in the two conditions ¢ and B) is a clue that some players, on some trials, are making
choices without forming beliefs of the sort that require any deep processing about what
other players will do, so that belief elicitation is actually a completely different sort of
neural activity than choic®’ Therefore, the first comparison we focus on is between row
playerschoosing strategies andxpressing beliefs about what column players will do.

Figure 3 shows brain “sections” which reveal four significantly higher activations in
the choice(C) condition compared to the beligB) condition (i.e., the € > B sub-
traction”) which have 10 or more adjacent voxgls> 10).18 The differentially active
regions are the posterior cingulate cortex (P&Cthe anterior cingulate cortex (ACC),
the transitional cortex between the orbitofrontal cortex (OFC) and the agranular insula
(which we call frontal insula, FI§2 and the dorsolateral prefrontal cortex (DLPFC). The
sections each show differential activity using a color scale to show statistical signifi-
cance. A 3-dimensional coordinate system is used which locates the middle of the brain at
x =y =_z=0. The upper left section (a) is “sagittal,” it fixes a valueot= —3 (that is
3 mm to the left of the zero point on the left-right dimension). The upper right section (b)
is “coronal” atY = +48 (48 mm frontal or “anterior” of th& = 0 point). The lower left
section (c) is “transverse” (or “axial”) & = —18, 18 mm below the zero line.

Figure 4 shows the time courses of raw BOLD signals onytfais (in normalized
percentage increases in activity) in the PCC region identified above (left, or superior, in the
upper left section Fig. 3(a)), for th@ (thick line), B (thin line) and B (dotted line) tasks.
These pictures show how relative brain activity increases or decreases in a particular area

17 An important caveat is that different tasks, and game complexities, will produce different patterns of eye
movement. Since we do not have a complete map of brain areas that participate in eye movements for the purpose
of decision (though see Glimcher, 2003), some of what we might see might be part of general circuitry for eye
movement, information acquisition, etc., rather than for strategic thinking per se. The best way to tackle this is
to record eye tracking simultaneously with fMRI and try to use both types of data to help construct a complete
picture.

18 A very large fifth region not shown in Fig. 3 is iR occipital cortex (9—78, 9,k =202, = 6.77). When we

use a smallek-voxel filter, k = 5 (used in Fig. 3) there are four additional active regions besider thecipital

and those shown in Fig. 3 (see Table A.4 in Appendix A) which are not especially interpretable in terms of
strategic thinking.

19 We use the following conventions to report locations and activity: The veet8r £9, 33,k = 5, positive

in 14 of 16 subjects) means that the voxel with peak activation in the cluster has coordirate8, y = —9,

z = 33. The coordinates, y, andz respectively measure distance from the left to the right of the brain, from
front (“anterior”) to back (“posterior”), and bottom (“inferior”) to top (“superior”). The figure= 5 means the

cluster has 5 voxels of 3 cubic millimeters each. The number of subjects with positive regression coefficients is
an indication of the uniformity of the activation across subjects. Table A.4 in Appendix A shows coordinates for
all regions mentioned in this paper, and some regions that are not discussed in the text.

20 F| and ACC are the two regions of the brain known to contain spindle cells. Spindle cells are large elongated
neurons which are highly “arborized” (like a tree with many branches, they project very widely, and draw in
information and project information to many parts of the brain) that are particular to humans and higher primate
kin, especially bonobos and chimpanzees (Allman et al., 2002). It is unlikely that any of these brain areas are
solely responsible for our ability to reason about others. In fact it seems that the pathologies where individual do
not have these abilities, namely Autism and Asperger’s syndrome, do not involve lesions of any specific areas
of the brain, but rather more generalized developmental problems including a decreased population of spindle
cells (Allman, Caltech seminar), decreased connectivity to the superior temporal sulcus (Castelli et al., 2002),
and defects in the circuitry of the amygdala (Siegal and Varley, 2002).
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(@x=-3 (b)Y = +48

0

(c)Z=-18

Fig. 3. Areas of significantly differential activity in choice minus belief conditions, all trialg; at0.001 (un-
corrected). (a) Top area is posterior cingulate cortex, PE®, (12, 33,k = 24,t = 5.12; 14 of 16 subjects
positive); right area is anterior cingulate cortex/genu ACC (6, 42,933, 1 = 4.62; 15 of 16 subjects positive).
(b) dorsolateral prefrontal cortex DLPFES27, 48, 9k = 14,t = 4.74; 15 of 16 subjects positive). () transition
cortex/Fl (-42, 12,—18; k = 31,t = 4.60, 14 of 16 subjects positive).

over time, for different tasks. The time courses also show standard error bars from pooling
across trials; when the standard bars from two lines do not overlap, that indicates statisti-
cally significant patterns of activation. The 0 time on #haxis is when the task stimulus

is first presented (i.e., the game matrix appears).xFhgis is the number of scanning cy-

cles (TRs). Each TR is 2 seconds, so a number 4 on{#es is 8 seconds of clock time.
Perhaps surprisingly, when the stimulus is presented the ACC actigalitivates during

these tasks (the signal falls). Since blood flow takes one or two TR cycles to show up in
imaging (about 3-5 seconds), the important part of the time sequence is in the middle of
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N 2nd Order Belief

Average Signal level (normalized within subjects)

0.6 1 1 | 1 1 | 1 1

Time from stimulus presentation in TRs (1 TR = 2 seconds)

Fig. 4. Time course of activity in posterior cingulate3, —12, 33) in choice (, thick line), belief B, thin line)
and 2nd-order belief @, dotted line) tasks.

the graph, between 3 TRs and 8 TRs (when most of the responses are made, since they
typically take 8—10 seconds; see Appendix A for details).

The important point is that during the choice task (thick line), PCC deactivation is higher
than in the B and B tasks—hence the differential activationdhminus B shown in the
previous Figure 3(a). Most importantly, note that the task activity lies between the
C and B activity. This is a clue that guessing what someone thinks you will2B) is a
mixture of a guessing proce&B), and choosing what you will d@C). This basic pattern—
2B is betweenC and B—also shows up in time courses of activity for all the other areas
highlighted in the brain sections in Fig. 3.

Figure 5 shows the location of anterior cingulate cortex (ACC, in yellow) and or-
bitofrontal cortex (pink). The cingulate cortex is thought to be important in conflict reso-
lution and “executive function” (e.g. Miller and Cohen, 2001). The ACC and PCC regions
that are differentially active in choosing rather than forming beliefs have both been im-
plicated in ToM and in other social reasoning processes. The PCC is differentially active
in moral judgments that involve personal versus impersonal involvement and many other
kinds of processing that involve emotional and cognitive conflict (e.g., Greene and Haidt,
2002). D. Tomlin (personal communication) has found relative activation in the very most
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Fig. 5. A brain drawing showing anterior cingulate cortex (ACC, yellow) and orbitofrontal cortex (OFC, pink).
The front of the brain (anterior) is to the left. Reprinted with permission of Ralph Adolphs.

anterior (front) and posterior (back) cingulate regions that are shown in Fig. 3 in repeated
trust games with a very large sample (almost 100 pairs of players), after another player’s
decision is revealet Since their subjects are playing repeatedly, presentation of what an-
other player actually does provides information on how he may behave in the next trial, it
is possible that this evidence is immediately used to start making the players next decision.

The fact that all these regions are more active when people are making choices, com-
pared to expressing beliefs, suggests that a very simple neural equation of forming a belief
and choosing is leaving out some differences in neural activity that are clues to how the
processes may differ.

The FI region we identify is close to an area noted by Gallagher et al. (2002) (38,
24, —20) in the inferior frontal cortex. Their study compared people playing a mixed-
equilibrium (rock, paper, scissors) game against human opponents versus computerized
opponents. The identification of a region differentially activated by playing people, which
is nearby to our region is a clue that this inferior frontal/FI region might be part of some
circuitry for making choices in games against other players.

Differential activation in frontal insula (FI) is notable because this area is activated
when people are deciding how to bet in ambiguous situations relative to risky ones, in the
sense of Ellsberg or Knight (Hsu et al., 2005). This suggests choice in a game is treated
like an ambiguous gamble while expressing a belief is a risky (all-or-none) gamble. This

21 Tomlin et al. reported a “self-other” map of the cingulate which includes the most anterior and posterior
regions we see in Fig. 3. They studied brain activation during repeated partner trust games. When the other
player's behavior was shown on a screen, the most anterior (front of the brain) region was active, independent of
the player role. When one’s own behavior was shown, more middle cingulate regions were activated. The most
posterior (back) regions were activated when either screen was shown. The brain often “maps” external parts of
the world (retinotopic visual mapping) or body (somatosensory cortex). The cingulate map suggests a similar
kind of “sociotopic” mapping in the cingulate.
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interpretation is consistent with 0- and 1-step thinking, in which evaluating strategies and
likely payoffs occurs with a shallow consideration of what other players will do, which
seems more ambiguous than forming a belief.

2.4. Equilibrium as a state of mind: Choice and belief in- and out-of-equilibrium

The evidence and discussion above suggests that the processes of making a strategic
choice and forming a belief ampt opposite sides of a neural coin. Interesting evidence
about this neural-equivalence hypothesis emerges when the trials are separated into those in
which all choices and beliefs are in equilibrium (i.€.=br(B), B =br(2B) andC = 2B)
and those which are out of equilibrium (one or more of the previous three parenthetical
conditions does not hold).

Figure 6 shows sections of differential activity in theand B tasks during equilibrium
trials. This is “your brain in equilibrium”: There is only one area actively different (at
p < 0.001) in the entire brain. This suggests that equilibrium can be interpreted not only

Vent. Stri. Vent. Stri.

S,

P
-
/

Vent. Stri.

Fig. 6. This is your brain in equilibrium: Area of significant differential activatiorCin- B for in-equilibrium
trials. The only significant area at< 0.001 (-3, 21,—3; k = 20,7 = 5.80) is ventral striatum.
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as a behavioral condition in which choices are optimal and beliefs rational, but also can
be interpreted neurally asstate of mind: When choices, beliefs and 2nd-order beliefs all
match up accurately, and are mutual best responses, there is only a minimal difference in
activation between choice and belief, which means the mechanisms performing those tasks
are highly overlapping?

Figure 6 does show one important differential activation, however, in the ventral stria-
tum. This region is involved in encoding reward value of stimuli and predicting reward
(e.g., Schultz, 2000. This area is also differentially activated when we compare choice to
the 2nd order belief task;statistic> 4 in several overlapping voxels). This difference
could be due to the difference in rewards in the choice and belief tasks. Note that activation
in Fl is not significantly different between th@ and B tasks in equilibrium (cf. Fig. 3),
which is a clue that perceived ambiguity from choosing is lower when choices and beliefs
are in equilibrium.

Figure 7 shows th€ minus B differential activation in trials when choices and beliefs
are out of equilibrium. Here we see some areas of activation similar to those in the overall
C minus B subtractior?® The novel activity here is in the paracingulate frontal cortex
region (Brodmann areBA 8/9; Fig. 7, upper left section). This region has appeared in
mentalizing tasks in two studies. One is the Gallagher et al. (2002) study of “rock, paper,
scissors”; a paracingulate area just anterior to the one in Fig. 7 is differentially active when
subjects played human opponents compared to computerized algofitivie€abe et al.

(2001) also found significant differential activations in the same area among subjects who
were above the median in cooperativeness in a series of trust-like games, when they played
humans versus computers.

In our tasks, of course, choosing and expressing belief are both done with another op-
ponent in mind (in theory). Activation of the paracingulate region in our non-equilibrium
C > B subtraction and in Gallagher et al.'s and McCabe et al.’s human—computer differ-
ence suggests that people are reasoning more thoughtfully about their human opponent

22 The difference between in- and out-of-equilibrivdn> B activity does not simply reflect the complexity of

the games which enter the two samples, because separating the trials into easy (solvable by dominance for row or
column) and hard (solvable in 2—3 steps) does not yield a picture parallel to Figs. 6—7. The difference is also not
due to lower test power (there are fewer in-equilibrium than out-of-equilibrium trials) because the strategic areas
active in Fig. 7 are not significantly activated in the in-equilibridim- B subtraction (paracingulate= 0.36;
dorsolateral prefrontat,= 1.34).

23 Note that the Fig. 3 activations, which pool all trials, do not look like a mixture of the Fig. 6 (in-equilibrium
trials) and Fig. 7 (out-of-equilibrium trials) activities. However, the areas which are differentially active below
the p < 0.001 threshold when all trials are pooled do tend to have activation in the in- and out-of-equilibrium
subsamples, but activation is more weakly significant in the subsamples and vice versa ta heubtraction

for out-of-equilibrium trials, the PCC is active at< 0.01 and the ACC ap < 0.005. The dorsolateral prefrontal

region (see Fig. 7) at«30, 30, 6,k = 14) which is active(p < 0.00)) in the out-of-equilibrium trials is just

inferior to the region active in all trials{27, 48, 9k = 14).

24 1n both conditions the subjects were actually playing against randomly chosen strategies (which is the Nash
equilibrium for this game). The occasional practice of deception in economics experiments conducted by neu-
roscientists raises a scientific question of whether it might be useful to agree on a no-deception standard in this
emerging field, as has been the stubborn and useful norm in experimental economics to protect the public good
of experimenter credibility.
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Fig. 7. This is your brain out-of-equilibrium: Areas of significant differential activationCin- B for
out-of-equilibrium trials. Largest area (15, 36, 33= 39; ¢t = 5.93, 12 of 13 positive ) is paracingulate cor-

tex (BA 9), visible in all three sections. Posterior area in the sagittal section (left in upper left section) is occipital
cortex (12,—75, —6; k = 19,t = 4.84). Ventral area in the coronal section (leftmost activity in the upper right
section) is dorsolateral prefrontal cortex30, 30, 6k = 14,1 = 4.85).

when choosing rather than believing. This pattern is consistent with low-level strategic
thinking in which players do not spend much time thinking about what others will do in
forming beliefs, when they are out of equilibrium.

The difference we observe in brain activity in- and out-of-equilibrium is similar to
Grether et al.’s (2004) fMRI study of bidding in the incentive-compatible Vickrey second-
price auction. After players were taught they should bid their values (a dominant strategy),
activity in the ACC was diminished.
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2.5. Sdf-referential iterated strategic thinking: 2nd-order beliefs versus beliefs

The second comparison we focus on is differential activity in the brain when row players
are asked what they think the column players thimdy (the row players) will do—their
2nd-order beliefs—compared to brain activity when they are just asked to state beliefs
about what column players will do.

Figure 8 shows differential activity in theR2condition, compared t®, in those trials
where players were out of equilibriufA.The large k = 35 atp = 0.005) voxel area is the
anterior insula (a smaller subset of these voxels,3, are still significant ap = 0.001).

The insula is the region in the brain responsible for monitoring body state and is an im-
portant area for emotional processing (see Fig. 9 for a picture of where the insula is). Parts
of the insula project to frontal cortex, amygdala, cingulate, and ventral striatum. The insula
is hyperactive among epileptics who feel emotional symptoms from seizures (fear, cry-
ing, uneasiness; Dupont et al., 2003), and in normal subjects when they feel pain, disgust
and social anxiety. Sanfey et al. (2003) found that the insula was activated when subjects
received low offers during the ultimatum game. Eisenberger et al. (2003) found the area
was activated when subjects were made to feel socially excluded from a computerized
game of catch. Importantly for us, the insula is also active when players have a sense of
self-causality from driving a cursor around a screen (compared to watch equivalent cursor
movement created by others; Farrer and Frith, 2001), or recall autobiographical memo-
ries (Fink et al., 1996). These studies suggest that insula activation is part of a sense of
“agency” or self-causation, a feeling to which bodily states surely contribute. Our region
overlaps with the area found by Farrer and Frith.

The insula activation in creating 2nd-order beliefs supports the hypothesis that 2nd order
belief formation is not simply an iteration of belief formation applied to imagine how what
other players believe about you. Rather, it is a combination of belief-formation and choice-
like processes. We call this the self-referential strategic thinking hypothesis. The basic
facts thatC and 2B activations tend to be very similaf, and 2B choices often match up
(Table 2), and that activations in th® and 2B tasks both tend to be different fros in
similar ways?® supports this hypothesis too.

2.6. Individual differences: Brain areas that are correlated with strategic 1Q

All the analyses above pool across trials and subjects (assuming random effects). An-
other way to approach the data is to treat each subject as a unit of analysis, and ask how
activation is correlated with behavioral differences in skill, across subjects.

To do this we first calculate a measure of “strategic 1Q” for each subject. Remember
that subjects actually had a human opponent in these games. Since subjects did not receive
any feedback until they came out of the scanner (and one of each 6f t(Beand 2B trials

25 This 2B > B subtraction for the in-equilibrium trials yields no significant regiongat 0.001. As noted
earlier, this shows that being in equilibrium can be interpreted as a state of mind in which forming beliefs and
2nd-order beliefs are neurally-similar activities.

26 pifferential C > B activation in the same insula region observed in tBes2 B subtraction is marginally
significant(r = 2.78), and is positive for 10 out of the 13 subjects in the sample.
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Fig. 8. Differential activity in iterated belief2B) minus belief(B) conditions, out-of-equilibrium trials only.
Significance levep < 0.005 (uncorrected)V = 13 because some subjects did not have enough non-Nash trials
to include. Area visible in all three sections is left inswad@, 0, 0,k = 35, ¢ = 4.44, 12 of 13 positive). This
area is still active but smaller in cluster size at lovwevalues £ =9 at p = 0.002,k = 3 at p = 0.001). The
other active region in the transverse slice (lower left) is inferior frontal gyrus (45, 33+=13, = 4.85).

was chosen randomly for actual payment), it makes sense to judgepeted payoffs

from their choices, and the accuracy of their beliefs, by comparing each row subject with
the population average @il the column players’ We use this method to calculate the
expected earnings for each subject from their choices, and from accuracy of their beliefs

27 This is sometimes called a “mean matching” protocol. It smoothes out the high variance which results from
matching each in-scanner subject with just one other subject outside the scanner.
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Fig. 9. A brain drawing showing insula cortex (in purple), as it would appear with the temporal lobe peeled back
at the Sylvian fissure. The front of the brain (anterior) points to the left. Drawing reprinted with permission of
Ralph Adolphs.

(i.e., how closely did their beliefs about column players’ choices match what the column
playersactually did?) and similarly for 2nd-order beliefs. Their earnings in each of the
three tasks are then standardized (subtracting the task-specific mean and dividing by the
standard deviation). Adding these three standardized earnings numbers acéasB trel

2B tasks gives each subject’s strategic 1Q relative to other subjects. (The three numbers are
only weakly correlated, about 0.20, across the three tasks, as is typical in psychometric
studies.)

We then regressed activation during the choice task on these strategic 1Qs. The idea is
to see which regions have activity that is correlated with strategic 1Q.

We expected to find that players with higher strategic 1Q might have, for example,
stronger activation in ToM areas like cingulate cortex or the frontal pole BA 10. However,
we found no correlations with strategic IQ in areas most often linked to ToM. Positive and
negative effects of skill on activation in these areas might be canceling out. That is, players
who are skilled at strategic thinking might be more likely to think carefully about others,
which activates mentalizing regions. However, they may also do so more effortlessly or
automatically, which means activity in those regions could be lower (or their responses
more rapid®

28 The identification problem here is familiar in labor economics, where there is unobserved skill. If you run a
regression on outpyty) against time worked) across many workers, for example, it might be negative because

the most skilled workers are so much more productive per unit time that they can produce more total output in a
shorter time than slow workers, who take longer to produce less. Similarly, Chong et al. (2005) recorded response
times of subjects and then inferred the number of steps of thinking the subjects were doing from their choices.
Surprisingly, they found that the number of thinking steps was negatively correlated with response time. This
puzzle can be explained if the higher-step thinkers are much faster at doing each step of thinking. It might also
mean, as noted in footnote 14, that subjects classified as 0-step thinkers are actually doing something cognitively
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However, choice-task activity in a= 13 voxel cluster in the precuneus and & 11
voxel cluster in the caudate (dorsal striatum), are positively correlated with;5€0(001
andp < 0.05 respectively), as shown in Fig. 10. The precuneus neighbors the posterior cin-
gulate (PCC) and is implicated in “integration of emotion, imagery, and memory” (Greene
and Haidt, 2002). Perhaps high-SIQ players are better at imagining what others will do,
and this imaginative process in our simple matrix games uses all-purpose circuitry that is
generally used in creating empathy or doing emotional forecasting involving others. The
SIQ-caudate correlation shown in Fig. 7 is naturally interpreted as reflecting the greater
certainty of rewards for the high SIQ subjects. This shows a sensible link between actual
success at choosing and guessing in the games (experimental earnings) and the brain’s
internal sense of reward in the striatum.

We also find interestingnegative correlations between strategic 1Q and brain activ-
ity during the choice task. Figure 11 shows the strong negative correlation between
SIQ and activity in the left anterior insula-@9, 6, —3, kK = 25) in the choice task,
relative to a baseline of all other tasks, and also shows the insula region of inter-
est in a sagittal slicd Note that the low-SIQ players have ancrease in activa-
tion relative to baseline (i.e., the-axis values for those with negative standardized
SIQ are positive), while the high-SIQ players have a decrease (negatives va-
lues).

As noted above, the region of anterior insula in Fig. 11 which is correlated with SIQ
is also differentially active in the R task relative to theB task. We interpret this as ev-
idence that subjects are self-focused when forming self-referential iterated beliefs. The
increase in insula activity might be an indication that too much self-focus in making a
choice is a mistake—subjects who are more self-focussed do not think enough about the
other player and make poorer choices and less accurate guesses. An alternative explanation
is that subjects who are struggling with the tasks, and earn less, feel a sense of unease, or
even fatigue from thinking hard while lying in the scanner (remember that the insula is
activated by bodily discomfort). The higher insula activation for lower strategic 1Q players
may be the body’s way of expressing strategic uncertainty to the brain. The fact that there
is deactivation in the choice task for higher SIQ players suggests a different explanation for
them—e.g., by concentrating harder on the games they “lose themselves” or forget about
body discomfort.

The fact that insula activity is negatively correlated with strategic 1Q suggests that self-
focus may be harmful to playing games profitably. A natural followup study to explore
this phenomenon is to compare self-referential iterated beliefs of the form “what does sub-
ject A think that B thinks I (i.e., A) will do” with “what does someone else (C) think

sophisticated which the model cannot classify as higher-level thinking. (In some games, this even includes Nash
equilibrium choices.)

29 The y-axis is the regression coefficient in normalized signal strength (%) for each subject from a boxcar
regression which has an independent dummy variable Iofvhen the choice task stimulus is on the screen—

from screen onset to the time that the subject made a decision with a button press—and 0 otherwise. The activation
is scaled for each subject separately in percentage terms, so the results do not merely reflect differences in overall
activation between subjects. The rank-order correlation corresponding to the correlation in Fig.-80e91is

(t =5.08) so it is not simply driven by outliers.
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Fig. 10. (a) Sagittal slice showing insula (-42, 6,—3,k =12, = 5.34), p < 0.0005. (b) Cross-subject corre-
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Fig. 11. (a) Areas positively correlated with SIQ &« 0.05): Precuneus (on left, 3;66, 24,k = 312, = 4.90),
caudate (dorsal striatum) (12, 0, 5= 11, t = 2.52). (b) Cross-subject correlation between relative caudate
activity (y-axis) and relative SIQx-axis) ¢- = 0.56, p < 0.025; rank-order correlatios 0.60).
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B thinks A will do” (a non-self-referential 2nd order belief task). If self-focus harms the
ability to guess accurately what thinks you(A) will do, a third party(C) may be more
accurate about guessimjs beliefs aboutd’s move thanA is. This possibility is related

to psychology experiments on “transparency illusions” (Gilovich and Medvec, 1998) and
“curse of knowledge” (Camerer et al., 1989; Loewenstein et al., 2003). In these experi-
ments, subjects find it hard to imagine that other people do not know what they the subjects
themselves know.

At this point, we do not know empirically if non-self-referential 2nd-order beliefs are
more accurate than self-referential 2nd-order beliefs. The key point is that we would never
have thought to ask this question until the neuroeconomic method suggested a link between
insula activity, self-reference, and low strategic 1Q. This is one illustration of the capacity
of neural evidence to inspire new hypotheses.

3. Discussion and conclusion

Our discussion has two parts. We first mention some earlier findings on neuroscientific
correlates of strategic thinking. Then we will summarize our central findings, and briefly
conclude about how to proceed.

3.1. Other neuroscientific evidence on strategic thinking

An irony of neuroeconomics is that neuroscientists often find the most basic princi-
ples of rationalityuseful in explaining human choice, while neuroeconomists like our-
selves hope to use neuroscience to help us undersiiautd of rationality in complex
decision making (usually by suggesting how to weaken rationality axioms in biologically-
realistic waysy® As a result the simplest studies of strategic thinking by neuroscien-
tists focus on finding brain regions that are specially adapted to do the simplest kind of
strategic thinking—reacting differently to humans compared to nonhuman computerized
algorithms. As noted earlier, when subjects played mixed-equilibrium and trust games,
respectively, against humans rather than computerized opponents, Gallagher et al. (2002)
found activation in inferior frontal areas and paracingulate areas, and McCabe et al. (2001)
found activity in the frontal pole (BA10), parietal, middle frontal gyrus and thalamic areas.

30 The same irony occurs in models of risky choice where strategic thinking plays no role. Glimcher (2003)
shows beautifully how simple expected value models clarified whether parietal neurons encode attention, inten-
tion or—the winner—something else (expected reward). At the same time, decision theorists imagine that neural
circuitry might provide a foundation in human decision making for theories showing how choices violate simple
rationality axioms—viz., that evaluations are reference-dependent, probabilities are weighted nonlinearly, and
emotional factors like attention and optimism play a central role in risky decision making. A way to reconcile
these views is to accept that simple rationality principles guide highly-evolved pan-species systems necessary for
survival (reward, food, sex, violence) but that complex modern choices are made by a pastiche of previously-
evolved systems and are unlikely to have evolved to satisfy rationality axioms only discovered in recent decades.
Understanding such modern decisions forces us to become amateur neuoroscientists and learn about the brain,
and talk to those who know the most about it.
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A few other studies have focused on reward and emotional regions in games. Rilling
et al. (2002) found striatal activation in response to mutual cooperation in a PD, which
they interpret as a rewarding “warm glow” that sustains cooperation. De Quervain et al.
(2004) find nucleus accumbens activation when third-party players sanction players who
betrayed the trust of another player, showing a “sweet taste of revenge” (which is also
price-sensitive, revealed by prefrontal cortical activity). The Sanfey et al. (2003) study on
ultimatum games showed differential insula, ACC, and dorsolateral prefrontal activation
for low offers. Singer et al. (2004) found that merely seeing the faces of players who
had cooperated activated reward areas (striatum), as well as the insula. The latter finding
suggests where game-theoretic concepts of a person’s “reputation” are encoded in the brain
and are linked to expected reward. Tomlin et al. (personal communication) find that the
most anterior and posterior cingulate regions are active when players are processing what
other players have done in a repeated trust games.

Many of these regions are also active in our study. The insula, active in evaluating low
ultimatum offers and upon presentation of cooperating partners, is also active in creating
2nd-order beliefs in our study. The cingulate regions in Tomlin et al. are also prominent
when players are choosing strategies, compared to guessing what other players will do.

Special subject pools are particularly informative in game theory, where stylized models
assume players are both self-interested (almost sociopathic) and capable of great foresight
and calculation. Hill and Sally (2002) compared autistic children and adults playing ul-
timatum games. About a quarter of their autistic adults offered nothing in the ultimatum
game, which is consistent with an inability to imagine why others would regard an offer
of zero as unfair and reject it. Offers of those adult autistics who offer more than zero
cluster more strongly around 50% than the autistic childrens’ offers, which are sprinkled
throughout the range of offers. The child—adult difference suggests that socialization has
given the adults a rule or “workaround” which tells them how much to offer, even if they
cannot derive an offer from the more natural method of emotionally forecasting what oth-
ers are likely to accept and reject. Gunnthorsdottir et al. (2002) found that subjects high
on psychometric “Machiavellianism” (“sociopathy lite”) were twice as likely to defect in
one-shot PD games than low-Mach subjects.

A sharp implication in games with mixed equilibria is that all strategies that are played
with positive probability should have equal expected reward. Platt and Glimcher (1999)
found neurons in monkey parietal cortex that have this property. Their parietal neurons,
and dorsolateral prefrontal neurons in monkeys measured by Barraclough et al. (2004),
appear to track reinforcement histories of choices, and have parametric properties that are
consistent with Camerer and Ho’s (1999) dual-process EWA theory, which tracks learning
in many different games with human subjetts.

31 |n the Camerer-Ho theory, learning depends on two processes: (1) A process of reinforcement of actual
choices, probably driven by activity in the limbic system (striatum), and (2) a potentially separate process of re-
inforcing unchosen strategies according to what they would have paid (which probably involves a frontal process
of counterfactual simulation similar to that involved in regret). A param&t@presents the relative weight on

the counterfactual reinforcement relative to direct reinforcement. Estimates by Barraclough et al. (2004) from
activity in monkey prefrontal cortex support the two-process theory. They estimate two reinforcements: When
the monkeys choose and win (reinforcementAy), and when they choose and los&. In their two-strategy
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Still other studies have focussed on coarse biological variables rather than detailed
brain processes. In sequential trust games, Zak et al. (2003) find a link between levels
of oxytocin—a hormone which rises during social bonding (such as intimate contact and
breast-feeding)—and trust. Gonzalez and Loewenstein (2004) found that circadian rhythms
(whether you're a night or morning person) affected behavior in repeated trust (centipede)
games—yplayers who are “off peak” tended to cooperate less.

3.2. What we have learned

In this paper, we scanned subjects’ brain activity using fMRI as they made choices,
expressed beliefs, and expressed iterated “2nd-order” beliefs. There are three central em-
pirical findings from our study:

e A natural starting point for translating game theory into hypotheses about neural cir-
cuitry is that most of the processes in making choices and forming beliefs should
overlap when players are in equilibrium. Indeed, in trials where choices and beliefs
are in equilibrium, this hypothesis is true—the only region of differential activation
between choice and belief tasks is the striatum, perhaps reflecting the higher “reward
activity” from making a choice compared to guessing. In general, however, making a
choice (rather than making a guess) differentially activates posterior and anterior cin-
gulate regions, frontal insula, and dorsolateral prefrontal cortex. Some of these regions
are part of “theory of mind” circuitry, used to guess what others believe and intend to
do. The cingulate activity suggests that brains are working harder to resolve cognitive-
emotional conflicts in order to choose strategies.

e Forming self-referential 2nd-order beliefs—guessing what others think you will do—
compared to forming beliefs, activates the anterior insula. This area is also activated
by a sense of agency or self-causation (as well as by bodily sensations like disgust and
pain). Combined with behavioral data and study of the time courses of activation, this
suggests that guessing what others think you will do is a mixture of forming beliefs
and making choices. For example, this pattern of activity is consistent with people
anchoring on their own likely choice and then guessing whether other players will
figure out what they will do, when forming a self-referential 2nd-order belief.

e Since subjects actually play other subjects, we can calculate how much they earn from
their choices and beliefs—their “strategic 1Q.” When they make choices, subjects with
higher strategic IQ have stronger activation in the caudate region (an internal signal of
predicted reward which correlates with actual earnings) and precuneus (an area thought
to integrate emotion, imagery and memory, suggesting that good strategic thinking
may use circuitry adapted for guessing how other people feel and what they might
do). Strategic 1Q is negatively correlated with activity in insula, which suggests that

games, the model is mathematically equivalent to one in which monkeys are not reinforced for losing, but the
unchosen strategy is reinforced Ry. The fact thatA is usually less tham 1 in magnitude (see also Lee et al.,

2004) is equivalent té6 < 1 in the Camerer—Ho theory (less reinforcement in the second process from unchosen
strategies), which corresponds to parametric measures from many experimental games with humans (see Camerer
etal., 2004b).
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too much self-focus harms good strategic thinking, or that poor choices are neurally
expressed by bodily discomfort.

It is too early to know how these data knit together into a picture of brain activity during
strategic thinking. However, activity in cingulate cortex (posterior, neighboring precuneus,
anterior, and paracingulate) all appear to be important in strategic thinking, as does activity
in dorsolateral prefrontal cortex, the insula region and in reward areas in the striatum. The
most novel finding is that activity in creating self-referential 2nd-order beliefs activates
insula regions implicated in a sense of self-causation. That interpretation, along with the
fact that 2nd-order beliefs are highly correlated with choices, is a clue that higher-order
belief formation is not a simple iteration of belief formation. Furthermore, the link between
self-focus suggested by insula activity and its negative correlation with low strategic 1Q
suggests that third-party 2nd-order beliefs guessing whaB thinks A will do) might
be more accurate than self-referential 2nd-order beli¢fguessing whaB thinks A will
do). This novel prediction shows how neural evidence can inspire a fresh idea that would
not have emerged from standard theory.

Note that the study of brain activation is not really intended to confirm or refute the
basic predictions in game theory; that kind of evaluation can be done just by using choices
(see Camerer, 2003). Instead, our results provide some suggestions adgat basis for
game theory which goes beyond standard theories that are silent about neural mechanisms.
Neural game theories will consist of specifications of decision rules and predictions about
both the neural circuitry that produces those choices and its biological correlates (e.g.,
pupil dilation, eye movements, etc.). These theories should also say something about how
behavior varies across players who differ in strategic 1Q, expertise, autism, Machiavellian-
ism, and so forth. Linking brain activity to more careful measurements of steps of strategic
thinking is the next obvious step in the creation of neural game theory.
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Appendix A. Order of gamesand tasks, raw choice datain gamesfMRI regionsin
texts scans, methods, and instructions

In the Table A.1: In the “CGCB transform” column, in notatiotx (r,c; Y — Z), Gx
denotes name and letterandc are constants added to original CGCB payoffs to trans-
form them to experimental currency payoffs we used, Bnd Z denotes original rows or
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Table A.1

Order of games, transformation from original CGCB games, and order of tasks for each game

Game CGCB transform Task order Game type

1 2A (—10,—5; AA — BB) C,B,2B Row player has dominant strategy

2 3A (—20,+10) 2B,C,B Column player has dominant strategy

3 5A (+15,-13;A - C) 2B, B, C 3 x 2 Game, 3 steps of dominance for row player
4 5B (-7,+11, B —C) B,2B,C 3 x 2 Game, 3 steps of dominance for row player
5 6A (—17,—3; AA — BB) C,2B,B 2 x 3 Game, 2 steps of dominance for row player
6 6B (+7,+0; AA—-CC) B,C,2B 2 x 3 Game, 2 steps of dominance for row player
7 9A (+19,+19,A - C) C,B,2B Row player has a dominant strategy

8 9B (0,0) B,C,2B Column player has dominant strategy

Table A.2

Frequency of strategy choicés— D andAA — DD in our study vs. Costa-Gomes et al. (2001) data. (CGCB data
denoted €”; “n/a.” denotes strategies that did not exist in a particular game)

A B C D AA BB CcC DD
New C New C New C New C New C New C New C New C

.25 21 .75 .79 nla n/a nla na .61 .69 .39 .31 nla n/a nla n/a
.50 .86 .50 14 n/a n/a nla na .61 92 .39 .08 n/a n/a nla n/a
31 21 .56 79 .13 .00 n/a nfa .39 23 .61 77 nla n/a nla n/a
.25 .14 .63 71 .13 .14 nla nfa .44 46 .56 .54 nla n/a nla n/a
44 .79 .56 21 nla n/a nla nfa .22 .38 .17 .00 .61 .62 nla n/a
.50 .36 .50 .64 nla n/a nla n/a .56 a7 .22 .08 .22 .15 n/a n/a
.38 .08 .00 .00 .06 .00 .56 .92 .56 46 44 .54 nla n/a nla n/a
.38 .07 .63 93 nla n/a nla nfa .11 .08 .00 .00 .17 .00 .72 .92

O~NOO O WNPRP|H

columns that are switched to create our matrices. Example: Our game 3 (see text, Fig. 1) is
CGCB game 8 with 15 added to all row payoffs, 13 subtracted from all column payoffs,
and rowsA and C switched. In game 6 there was a math error in one cell(BAA) in

our game we added 6 instead of 7 to the corresponding cell in CGCB, this did not change
the strategic structure of the game.

A.1. Methodological details

Pairs of subjects were recruited on campus at Caltech through SSEL lab recruiting soft-
ware3? One subject performed the tasks in the scanner, as the row player, while the other
performed them in an adjacent room, as the column player. These three tasks were given
in a random order for each game to control for order effects.

In the scanner each subject proceeds through a series of screens (like Fig. 1) one at a
time, at their own pace. They press buttons on a box with 4 buttons to record their responses
(choosing a row strategy i@ and 2B tasks, and a column strategy across the bottom of

32 since Caltech students are selected by the admissions committee, for their unusual analytical skill, they are
hardly a random sample. Instead, their behavior is likely to overstate the average amount of strategic thinking in
a random population. This is useful, however, in establishing differential activation of regions for higher-order
strategic thinking since the subjects are likely to be capable of higher-order thinking in games that demand it.
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Table A.3
Distributions of free response times (25th, 50th—median—and 75th percentiles) in seconds across tasks and
games

Choice(C) median Belief(B) median 2nd ordef2B) median

25% 50% 75% 25% 50% 75% 25% 50% 75%
Game 1 14 204" 26.2 113 125 183 578 858 137
Game 2 87 11 209 6.58 775 135 145 223" 255
Game 3 &8 107 163 9.61 112 202 168 25 42.8
Game 4 01 7.83 15 114 166% 329 6.08 108 239
Game 5 18 249" 37.3 6.55 116 167 7.92 101 239
Game 6 8L 95 134 196 252" 42.8 461 6.54 151
Game 7 1% 255" 42 608 923 141 6.58 10 173
Game 8 617 805 122 158 209" 26 567 111 138

Note: Response times are typically about twice as long for the first task presented.
* Denotes task which was presented first (e.g., tBeak was first in game 3).

the screen imB tasks). After each response is recorded, there is a random lag from 6-10
seconds with a “fixation cross” to hold their visual attention in the center of the screen. The
entire set of tasks took from 7 to 15 minutes.

At the end of the experiment 1 of the 24 tasks was chosen at random and subjects were
paid according to their payoffs in the games at a rate of $0.30 a point, if a choice task was
picked, or were given $15 for a correct answer to the belief tasks. All payments were in
addition to a $5 show-up fee.

Subjects in the scanner were debriefed after the experiment to control for any difficulties
in the scanner and to get self-descriptions as to their strategies. The most common strategy
described was a hybrid between cooperation and self-interest where they acted largely to
maximize their own payoffs, but would cooperate if a small loss to herself would result in
alarge gain to the other play&Some subjects seemed empirically more cooperative than
others, but we treated all subjects similarly in our analysis.

To do the scanning, we first acquired a T1l-weighted anatomical image from all row
players. (This is a sharper-resolution image than the functional images taken during behav-
ior so that we can map areas of activation onto a sharper image to see which brain areas
are active.) Functional images were then acquired while subjects in the scanner played
with subjects outside the scanner. They were acquired with a Siemens 3T MRI scanner
using a T2-weighted EPI (TR 2000 msec TE= 62 ms, 34 (32 for smaller heads) 3 mm
slices), 32—34 slices depending on brain size. The slice acquisition order wa$,(2 .,
1,3,5,...). Data was acquired with one functional run per subject.

Data were analyzed using SPM2. Data were first corrected for time of acquisition,
motion-corrected, coregistered to the T1-weighted anatomical image, normalized to the
MNI brain and smoothed with an 8 mm kernel. The data were then detrended using a
high-pass filter of periods greater that 128 seconds and an AR(1) correction.

33 subjects reporting this strategy included some who'd taken one or more classes in game theory and were
familiar with the concept of Nash equilibrium.
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Table A.4
Coordinatesx, y, z), cluster sizesk), and:-statistics for subtractions and activity-behavior correlations reported
in the text

Comparison Signif. Area X y Z Cluster T-stat.
threshold sizek
Choice> Belief (all p=0.001 R Occipital Lobe 9 —78 9 202 677
games, all subjects) Cingulate Gyrus -3 -12 33 24 512
L Dorsolateral —-27 48 9 14 474
ACC 6 42 0 33 462
Frontal Insula —42 12 -18 31 460
R Cerebellum 9 —42 -27 17 449
R Insula 36 12 -3 6 410
2nd order Beliet- Belief p=0.001 LInsula —42 3 0 3 444
(out of equilibrium Inferior Frontal Gyrus 45 33 0 8 .85
games only) p=0.002 LInsula —42 3 0 9 444
Inferior Frontal Gyrus 45 33 0 13 .85
Choice-task activity p=0.0005 LeftInsula —42 6 -3 12 534
negatively correlated with BA 11 —24 45 -15 6 547
SIQ (games w/dominant R Cerebellum 9 —-78 -18 6 528
strategies excluded)
Choice-task activity p=0.001 Precuneus 3-66 24 13 490
positively correlated with p=0.05 Caudate 12 0 15 11 52
SIQ (games w/dominant Precuneus 3 —-66 24 312 490
strategies excluded) R Occipital/ Cerebellum 18 —87 -21 33 361
Precentral Gyrus —42 -18 42 45 290
Occipital Gyrus —-27 —-63 -12 12 235
L Occipital —-36 -84 -15 6 228
R Occipital 48 —-69 36 13 24
Choice> Belief (in equil.) p=0.001 Ventral Striatum -3 21 -3 20 580
Choice> Belief (out of equil.) p=0.01 Cingulate/BA 24 -3 -12 33 na 2.76
p=0.005 ACC 6 42 0 13 a7
ACC 15 42 0 13 B3
p=0.001 Paracingulate 15 36 33 39 .98
L Dorsolateral -30 30 6 14 485
R Occipital 12 -75 -6 19 484
R Occipital 30 -60 9 12 473

Note: R andL denote right and left hemispheres, respectively.

* Cluster size is not reported for this voxel since at thisalue there is so much activity that clusters overlap
significantly. In this instance we do not feel that the cluster size is particularly informative, we repost#tistic
merely to show that there is some activity in the ChoicBelief (out of equil.) contrast that overlaps with what
we see in the overall Choice Belief contrast.

For each analysis the general linear model was constructed by creating dummy variables
that were “on” from the stimulus onset time until the decision. These dummy variables
were convolved with the standard hemodynamic response function. Stanestd were
used to determine whether coefficient on one dummy variable is greater than that on
another. Data from all the subjects were combined using a random-effects model. The
cross-subject regressions regress regression coefficients of treatment affects across voxels
against behavioral measures of strategic Q.
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A.2. Instructions to subjects

This is an experiment on decision-making. The decisions you make will determine a sum of money you will
receive at the end of this experiment. If you read these instructions carefully, you stand to earn a substantial sum
of money.

The questions in this experiment will all involve playing “matrix games.” For the duration of the experiment
Player 1 will be the “row player” and Player 2 will be the “column player.” You will be shown a series of game
that look something like this:

Player 1's payoff ~ Player 2's payoffs
AA BB CC AA BB CC

A 15 16 35 6 20 7

10 20 30 7 23 10

cC 20 17 36 O 7 3

o

In these games the row player chooses a row and the column player chooses a column. Above, the row
player would choosel, B or C and the column player would choosd, BB, or CC. You will both make these
decisions simultaneously and the cell that is determined by your choices determines your payoff. For example:
If in the above example the row player had chogand the column player had chos€@—The row player:

Player 1, would receive 30 points and the column player: Player 2, would receive 10 points. If on the other hand
Player 1 had selectad and Player 2 had select®&B the payoffs would be 17 for Player 1 and 7 for Player 2.

In addition to playing the games you will be asked some questions about the games during the course of
the experiment. You will be asked what you think the other player will choose, and what you think the other
player believegou will choose. These questions will be mixed in with the games in a random order so pay close
attention to the question at the top of the screen. If you are Player 2 (outside the scanner) you may not go back
and forth among the questions.

Payment

In addition to playing the games you will be asked some questions about the games during the course of the
experiment. At the end of the experiment we will select one game or question and award you for your performance
on that game or question. You will earn $15 for a correct answer to a question, or $0.30 a point for points earned
in the game. In addition you be given a $5.00 show-up fee.

Questions:

1) What is your age?

2) What is you sex? (F/M)

3) Are you left handed or right handed?

4) Have you taken any courses in Economics and/or Game Theory. If so, please list these below.
a.

oo

e.

5) In game a. below, if the row player choosésand the column player choosé#, what are both players’
payoffs?

6) Practice games—If you're Player 1, choose a row. If you're Player 2, choose a column.
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a. Player 1's Payoffs  Player 2’s Payoffs
AA BB CC AA BB CC

A 10 12 48 20 19 12

B 5 30 25 78 42 60

c 20 13 0 50 7 9

D 43 16 27 15 10 13

b.  Player 1's Payoffs  Player 2's Payoffs
A BB CC AA BB CC

0 -1 1 0 1 -1

1 0o -1 -1 0 1
-1 1 0 1 -1 0

aw >

If you have any further question about how to play these games, ask the experimenter now.
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