Let $f(x, y), g(x, y)$ be differentiable functions. We are interested in the constrained optimisation problem

$$\begin{align*}
\text{maximise/minimise} & \quad f(x, y) \\
\text{subject to} & \quad g(x, y) = 0
\end{align*}$$

Remark: An equation $h(x, y) = c$, c constant, is called a constraint. Note that any constraint $h(x, y) = c$ can be rearranged to a constraint of the form $g(x, y) = 0$ by letting $g(x, y) = h(x, y) - c$.

In the last lecture we saw that the solutions to this problem - the constrained extrema - came in two flavours:

(I) the points (x, y) satisfying $\nabla f(x, y) = 0$ and $g(x, y) = 0$;

(II) the points (x, y) satisfying $\nabla f(x, y) = \lambda \nabla g(x, y)$ and $g(x, y) = 0$, for some nonzero λ, called a Lagrange multiplier.

Note that type (I) points can be considered to be type (II) points for the case $\lambda = 0$.

We generalise to the setting of several variables:

Method of Lagrange multipliers: single constraint

Let $f(x), g(x)$ be differentiable functions of n variables. If x is a solution to the constrained optimisation problem

$$\begin{align*}
\text{maximise/minimise} & \quad f(x) \\
\text{subject to} & \quad g(x) = 0
\end{align*}$$

then there exists some λ such that (x, λ) is a solution to the equation

$$\nabla f(x) = \lambda \nabla g(x)$$
Remark: The method of Lagrange multipliers can be extended to the case of multiple constraints \(g_1(x) = \ldots = g_k(x) = 0 \). In this case there are two flavours of constrained extrema:

(I) the points \(x \) satisfying \(\nabla f(x) = 0 \) and \(g_1(x) = \ldots = g_k(x) = 0 \);

(II) the points \(x \) satisfying \(\nabla f(x) = \sum_{i=1}^{k} \lambda_i \nabla g_i(x) \) and \(g_1(x) = \ldots = g_k(x) = 0 \), for some \(\lambda_1, \ldots, \lambda_k \) (not all equal to zero).

The gradient condition states that \(\nabla f(x) \) is orthogonal to the tangent space of the space defined by \(g_1 = \ldots = g_k = 0 \). For details see p.284 of the textbook.

Example: Model the surface of the Earth by the unit sphere \(x^2 + y^2 + z^2 = 1 \). A satellite is orbiting the earth at a fixed height - in our model the satellite’s orbit is constrained to lie in the sphere \(x^2 + y^2 + z^2 = 9 \). Assume we are standing at \((1,0,0) \) on the surface of the Earth. Let’s use Lagrange multipliers to confirm the obvious (?) geometric fact: the satellite is closest to our position when the satellite is at \((3,0,0) \).

We model this problem as a constrained optimisation problem:

\[
\begin{align*}
\text{minimise} \quad & d(x, y, z) = (x - 1)^2 + y^2 + z^2 \\
\text{subject to} \quad & g(x, y, z) = x^2 + y^2 + z^2 - 9 = 0
\end{align*}
\]

Solution:

\[
\begin{align*}
\nabla d &= \begin{bmatrix} 2(x-1) & 2y & 2z \end{bmatrix} \\
\nabla g &= \begin{bmatrix} 2x & 2y & 2z \end{bmatrix}
\end{align*}
\]

\(\lambda \neq 0 \):

\(\lambda = 1 \):

\[
\begin{align*}
2(x-1) &= 2\lambda x \\
2y &= 2\lambda y \\
2z &= 2\lambda z \\
x^2 + y^2 + z^2 &= 9
\end{align*}
\]

\(\lambda = 1 \):

\[
\begin{align*}
2x - 2 &= 2x \\
2y &= 2y \\
2z &= 2z \\
x^2 + y^2 + z^2 &= 9
\end{align*}
\]

Applications of Extrema

Linear regression A set \(S \) of \(k \) points in the plane

\[
S = \{(x_1, y_1), \ldots, (x_k, y_k)\}
\]

can be interpreted as a data set relating two quantities \(x \) and \(y \). For example, \(x \) could represent SAT scores and \(y \) could represent college grades.

We want to understand what the general linear correlation is between the quantities \(x \) and \(y \) i.e. we want to find the line of best fit \(y = mx + b \). Mathematically, we want to solve the optimisation problem:

\[
\text{minimise} \quad D(m, b) = (y_1 - (mx_1 + b))^2 + \ldots + (y_k - (mx_k + b))^2
\]
Diagram:

We need to find the extrema of the function D. We compute ∇D:

\[
\frac{\partial D}{\partial m} = \sum_{i=1}^{k} 2 \left(y_i - (mx_i + b) \right) \left(mx_i + b \right) = -2 \sum_{i=1}^{k} x_i y_i + 2m \left(\sum x_i^2 \right) + 2b \left(\sum x_i \right)
\]

\[
\frac{\partial D}{\partial b} = \sum_{i=1}^{k} 2 \left(y_i - (mx_i + b) \right) = -2 \sum y_i + 2m \left(\sum x_i^2 \right) + 2k b
\]

Setting both partial derivatives equal to zero gives the equations

\[
(\sum x_i^2)m + (\sum x_i)b = \sum x_i y_i
\]

\[
(\sum x_i)m + \sum y_i = \sum y_i
\]

This is a system of linear equations in the two variables m and b. We solve to obtain the single solution:

\[
m = \frac{k \left(\sum x_i y_i \right) - \left(\sum x_i \right) \left(\sum y_i \right)}{k \left(\sum x_i^2 \right) - \left(\sum x_i \right)^2}
\]

\[
b = \frac{\left(\sum x_i^2 \right) \left(\sum y_i \right) - \left(\sum x_i \right) \left(\sum x_i y_i \right)}{k \left(\sum x_i^2 \right) - \left(\sum x_i \right)^2}
\]

This approach can be used to solve more general polynomial regression. For example, we could try to determine a parabola of best fit $y = ax^2 + bx + c$. Then, we aim to minimise

\[
D(a, b, c) = \sum_{i=1}^{k} \left(y_i - (ax_i^2 + bx_i + c) \right)^2
\]