MARCH 21 LECTURE

TEXTBOOK REFERENCE:
- *Vector Calculus*, Colley, 4th Edition: §2.3, 2.4

PARTIAL DERIVATIVES

LEARNING OBJECTIVES:
- Understand what it means for a function of several variables to be differentiable.
- Learn how to compute the matrix of partial derivatives.
- Understand the definition and basic properties of the derivative of a vector-valued function of several variables.
- Learn how to compute higher order partial derivatives.

KEYWORDS: differentiability, matrix of partial derivatives, the derivative, mixed partial derivatives

Differentiability
Let \(f : X \subseteq \mathbb{R}^2 \rightarrow \mathbb{R} \) be a function of two variables, \((a,b) \in X\). Suppose that the partial derivatives of \(f \) at \((a,b)\) exist. The linearisation of \(f \), \(L(x,y) \), is the function
\[
L(x,y) = f(a,b) + f_x(a,b)(x - a) + f_y(a,b)(y - b)
\]
and the tangent plane to the graph of \(f \) at \((a,b,f(a,b))\) is defined by the equation
\[
z = f(a,b) + f_x(a,b)(x - a) + f_y(a,b)(y - b).
\]
Differentiability of $f(x,y)$

Let $f : X \subseteq \mathbb{R}^2 \rightarrow \mathbb{R}$ be a function of two variables. We say that f is **differentiable at** $a = (a,b) \in X$ if the partial derivatives $f_x(a,b)$, $f_y(a,b)$ exist and if

$$\lim_{x \to a} \frac{f(x) - L(x)}{|x - a|} = 0$$

If f is differentiable for every $a \in X$ then we say that f is **differentiable**.

In words, f is differentiable at (a,b) if $L(x,y)$ provides a ‘good’ approximation of $f(x,y)$ near to (a,b).

Remark:

1. Analytically, ‘good’ means that $f(x) - L(x)$ goes to 0 faster than $|x - a|$.
2. This definition of differentiability extends to scalar-valued functions of n variables $f : X \subseteq \mathbb{R}^n \rightarrow \mathbb{R}$.

Example: Consider the function

$$f : \mathbb{R}^2 \rightarrow \mathbb{R}, (x,y) \mapsto 10 - x^2 - y^2$$

Then, the linearisation of f at $a = (a,b)$ is

$$L(x,y) = 10 - a^2 - b^2 - 2a(x - a) - 2b(y - b)$$

We have

$$f(x,y) - L(x,y) = a^2 - x^2 + b^2 - y^2 + 2a(x - a) + 2b(y - b)$$

$$= -(x - a)^2 - (y - b)^2$$

Then,

$$\frac{f(x,y) - L(x,y)}{|x - a|} = -\left(\frac{(x-a)^2 + (y-b)^2}{\sqrt{(x-a)^2 + (y-b)^2}} \right) = -\sqrt{(x-a)^2 + (y-b)^2}$$

It is now not too difficult to see that

$$\lim_{x \to a} \frac{f(x,y) - L(x,y)}{|x - a|} = 0$$

Hence, f is differentiable.

Exercise: show that

$$\lim_{x \to a} \frac{f(x,y) - L(x,y)}{|x - a|} = 0$$

using $\epsilon - \delta$ definition.
Remark: Geometrically, \(f \) is differentiable if its graph does not have any ‘corners’.

Sufficient Condition for differentiability

Let \(f : X \subseteq \mathbb{R}^2 \rightarrow \mathbb{R} \) be a function of two variables, \((a, b) \in X\). If the partial derivatives \(f_x(x, y) \) and \(f_y(x, y) \) are continuous in a sufficiently small disk centred at \((a, b)\) then \(f \) is differentiable at \((a, b)\).

Necessary Condition for differentiability

Let \(f : X \subseteq \mathbb{R}^2 \rightarrow \mathbb{R} \) be a function of two variables, \((a, b) \in X\). If \(f \) is differentiable at \((a, b)\) then \(f \) is continuous at \((a, b)\).

Example:

1. Consider the function \(f(x, y) = 2xy + \cos(y^2 + x^2) \). Then,

\[
 f_x(x, y) = 2y - 2x \sin(y^2 + x^2),
\]

\[
 f_y(x, y) = 2x - 2y \cos(y^2 + x^2).
\]

Both the partial derivatives are continuous - use the Algebraic Properties of Continuous Functions (p.111 of Colley). Hence, \(f \) is differentiable.

2. Consider the function \(f(x, y) = \frac{x^3 + 5y^4}{1 + x^2 + y^2} \), defined for all \((x, y) \in \mathbb{R}^2\). Then,

\[
 f_x(x, y) = \frac{3x^2 + x^4 + 3(xy)^2 - 10xy^4}{(1 + x^2 + y^2)^2}
\]

\[
 f_y(x, y) = \frac{20y^2 + 20x^2y^3 + 10y^5 - 2yx^3}{(1 + x^2 + y^2)^2}
\]

Both of those functions are continuous - they are rational functions whose numerator/denominator are polynomial functions are continuous. Hence, \(f(x, y) \) is differentiable.

3. Consider the function

\[
 f(x, y) = \begin{cases}
 \frac{x^2y^2}{x^4+y^4}, & (x, y) \neq (0, 0) \\
 0, & (x, y) = (0, 0)
 \end{cases}
\]

The limit does not exist as \((x, y) \rightarrow (0, 0)\) (Exercise!). Hence, \(f(x, y) \) can’t be continuous at \((0, 0)\).
However, the partial derivatives
\[
\frac{\partial f}{\partial x}(0, 0) = \lim_{h \to 0} \frac{f(h, 0) - f(0, 0)}{h} = \lim_{h \to 0} 0 = 0
\]
and
\[
\frac{\partial f}{\partial y}(0, 0) = \lim_{h \to 0} \frac{f(0, h) - f(0, 0)}{h} = \lim_{h \to 0} 0 = 0
\]
do exist. Hence, we see that we require a stronger condition than existence of partial derivatives to ensure differentiability of \(f \) at \((0, 0)\).

Higher order partial derivatives

It’s possible to ‘mix and match’ partial derivatives: given a function \(f : X \subset \mathbb{R}^n \to \mathbb{R} \) we know how to compute \(\frac{\partial f}{\partial x_i} \). We may now compute the partial derivative of this function with respect to any of the \(n \) variables \(x_1, \ldots, x_n \).

For example, if \(f(x, y, z) = x^2 - 2yz^3 + \frac{3xy^2}{z} \). Then,
\[
\frac{\partial f}{\partial x} = 2x + \frac{3y^2}{z}, \quad \frac{\partial f}{\partial y} = -2z^3 + \frac{6xy}{z}, \quad \frac{\partial f}{\partial z} = -6yz^2 - \frac{3y^2}{z^2}
\]
We may now compute the partial derivatives of each of these functions with respect to \(x, y, z \) (to obtain a total of nine new functions). We call these functions **second order (or mixed) partial derivatives** of \(f \):

\[
\frac{\partial^2 f}{\partial x^2} \overset{\text{def}}{=} \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) = 2
\]
\[
\frac{\partial^2 f}{\partial x \partial y} \overset{\text{def}}{=} \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) = \frac{6y}{z}
\]
\[
\frac{\partial^2 f}{\partial x \partial z} \overset{\text{def}}{=} \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial z} \right) = -\frac{3y^2}{z^2}, \quad \cdots
\]

Check your understanding

Compute three of the remaining six second order partial derivatives.

Clairaut’s Theorem

Let \(f : X \subset \mathbb{R}^n \to \mathbb{R} \) be a function of \(n \) variables, \((a,b) \in X\). If all first order and second order partial derivatives exist and are continuous then, for any \(i, j = 1, \ldots, n \),
\[
\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial^2 f}{\partial x_j \partial x_i}
\]
In words, **partial differentiation commutes**.
The Derivative

Let \(f : X \subseteq \mathbb{R}^2 \to \mathbb{R} \) be a function of two variables. The \textbf{gradient of \(f \) at \(a \)} is the (row) vector

\[
\nabla f(a) = \begin{bmatrix} f_x(a) & f_y(a) \end{bmatrix}
\]

\textbf{Observation:} we can write (1) as

\[
z = f(a) + \nabla f(a)(x - a), \quad x = \begin{bmatrix} x \\ y \end{bmatrix}
\]

(1*)

The product here is multiplication of the \(1 \times 2 \) matrix \(\nabla f(a) \) with the \(2 \times 1 \) matrix \(x - a \).

\textbf{Remark:}

1. Note the analogy with the equation of a tangent line of the graph of a single variable function:

\[
y = f(a) + f'(a)(x - a).
\]

2. If we consider the change of coordinates

\[
\hat{x} = x - a, \quad \hat{y} = y - b, \quad \hat{z} = z - f(a, b)
\]

then (1*) becomes

\[
\hat{z} = \nabla f(a)\hat{x}, \quad \hat{x} = \begin{bmatrix} \hat{x} \\ \hat{y} \end{bmatrix}
\]

3. The above remarks generalise to scalar-valued functions \(f : X \subseteq \mathbb{R}^n \to \mathbb{R} \), where we define the \textbf{gradient of \(f \) at \(a \)} to be the \(1 \times n \) row vector

\[
\nabla f(a) = \begin{bmatrix} f_x(a) & f_x(a) & \cdots & f_x(a) \\ f_y(a) & f_y(a) & \cdots & f_y(a) \\ \vdots & \vdots & \ddots & \vdots \\ f_n(a) & f_n(a) & \cdots & f_n(a) \end{bmatrix}
\]

Suppose that \(f : X \subseteq \mathbb{R}^n \to \mathbb{R}^m \) is a \textbf{vector-valued} function, \(f(x) = (f_1(x), \ldots, f_m(x)) \), with each \(f_1, \ldots, f_m : X \subseteq \mathbb{R}^n \to \mathbb{R} \) a scalar-valued function.

Define the \textbf{matrix of partial derivatives of \(f \) at \(a \) in \(X \)}, or the \textbf{Jacobian matrix of \(f \) at \(a \)}, to be the \(m \times n \) matrix \(Df(a) \) having \(i \)-th row \(\nabla f_i(a) \):

\[
Df(a) = \begin{bmatrix}
\frac{\partial f_1}{\partial x_1}(a) & \frac{\partial f_1}{\partial x_2}(a) & \cdots & \frac{\partial f_1}{\partial x_n}(a) \\
\frac{\partial f_2}{\partial x_1}(a) & \frac{\partial f_2}{\partial x_2}(a) & \cdots & \frac{\partial f_2}{\partial x_n}(a) \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial f_m}{\partial x_1}(a) & \frac{\partial f_m}{\partial x_2}(a) & \cdots & \frac{\partial f_m}{\partial x_n}(a)
\end{bmatrix}
\]

We write \(Df(x) \), or simple \(Df \), for the \(m \times n \) matrix whose \(ij \)-entry is \(\frac{\partial f_i}{\partial x_j}(x) \), and call it the \textbf{Jacobian of \(f \)}.

Define the \textbf{linearisation of \(f \) at \(a \) in \(X \)} to be the function

\[
L(x) = f(a) + Df(a)(x - a), \quad x \in \mathbb{R}^n
\]

The product here is multiplication of the \(m \times n \) matrix with the \(n \times 1 \) matrix \(x - a \). In particular, \(L(x) \in \mathbb{R}^m \).
Example: Consider the function
\[f : \mathbb{R}^2 \to \mathbb{R}^3, (x, y) \mapsto (x^2 + y, 2xy, x + y^2) \]
Then,
\[Df(x) = \begin{bmatrix} 2x & 1 \\ 2y & 2x \\ 1 & 2y \end{bmatrix} \]

Differentiability of \(f(x) \)
Let \(f : X \subseteq \mathbb{R}^n \to \mathbb{R}^m \) be a vector-valued function. We say that \(f \) is differentiable at \(a \in X \) if all partial derivatives \(f_{x_i}(a) \) exist and if
\[
\lim_{x \to a} \frac{f(x) - L(x)}{|x - a|} = 0
\]
If \(f \) is differentiable for every \(a \in X \) then we say that \(f \) is differentiable.

There are analogous results as for the two variable case.

Sufficient Condition for differentiability
Let \(f : X \subseteq \mathbb{R}^n \to \mathbb{R}^m, a \in X \). If all partial derivatives \(f_{x_i}(x) \) are continuous nearby to \(a \) then \(f \) is differentiable at \(a \).

Necessary Condition for differentiability
Let \(f : X \subseteq \mathbb{R}^n \to \mathbb{R}^m, a \in X \). If \(f \) is differentiable at \(a \) then \(f \) is continuous at \(a \).

Moreover, we can reduce differentiability of vector-valued functions to the differentiability of its component functions

Let \(f : X \subseteq \mathbb{R}^n \to \mathbb{R}^m, f(x) = (f_1(x), \ldots, f_m(x)), a \in X \). If \(f_1, \ldots, f_m \) are differentiable at \(a \) then \(f \) is differentiable at \(a \).

What is the derivative?
Observe the similarity between the linearisation of \(f \) at \(a \)
\[
L(x) = f(a) + Df(a)(x - a)
\]
and function whose graph is the tangent line of a single variable function \(f(x) \):
\[
L(x) = f(a) + f'(a)(x - a)
\]
Define the ‘multiplication by \(Df(a) \)’ linear map
\[
T_{Df(a)} : \mathbb{R}^n \to \mathbb{R}^m, \ x \mapsto Df(a)x
\]
then the linear map \(T_{Df(a)} \) plays the role of the derivative.

The derivative of a vector-valued function \(f \) of several variables is the linear map defined by the Jacobian of \(f \).