FEBRUARY 12 LECTURE

In this exercise we will have a geometric stretch and begin to flex our mathematical muscles. For our workout we will investigate the determination of the foci of an ellipse by a method known as Dandelin’s spheres (discovered in 1822 by Germinal Pierre Dandelin, a Belgian mathematician).

Warm-up exercises

1. [Some geometry] Consider the following geometric figure C, known as a cone (for obvious reasons!).

(a) Imagine you dropped a ball S (mathematicians often call balls, ‘spheres’) of radius r into the cone. Describe the set (= collection) of points \mathcal{P} on the cone that will be touching the ball S.

(b) Drop a larger ball S' of radius $s > r$ into the cone. Describe the set of points \mathcal{P}' on the cone that will be touching the ball S'.

(c) Can you state a geometric relationship between the sets \mathcal{P} and \mathcal{P}'?
2. [Some linear algebra] Recall the **dot product**: let \(\begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix}, \begin{pmatrix} w_1 \\ \vdots \\ w_n \end{pmatrix} \in \mathbb{R}^n \).

Then, the dot product is the real number

\[
\mathbf{v} \cdot \mathbf{w} = v_1w_1 + v_2w_2 + \ldots + v_nw_n
\]

(a) **Fill in the blanks!** Let \(\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^n \) be vectors.

i. \(\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \) ________________

ii. \((\mathbf{u} + \mathbf{v}) \cdot \mathbf{w} = \) ________________

iii. If \(\mathbf{u} \cdot \mathbf{v} = 0 \) then

\[
(\mathbf{u} + \mathbf{v}) \cdot (\mathbf{u} + \mathbf{v}) = \) ________________

What well-known Theorem is this?

(b) Suppose \(n = 3 \). Give a geometric interpretation of the quantity

\[
|\mathbf{u}| \overset{\text{def}}{=} \sqrt{\mathbf{u} \cdot \mathbf{u}}
\]

(c) Imagine a ball sitting in front of you. Choose a point \(P \) outside the ball.
Imagine drawing a straight line \(L \) from \(P \) to a point \(Q \) on the ball so that the line \(L \) is tangent to the ball. Choose another point \(Q' \) on the ball \((Q \neq Q')\) given by drawing another line \(L' \) starting at \(P \) that is tangent to the ball. (It may be useful to draw a picture below!)

What is the relationship between the length of \(L \) and the length of \(L' \)?