Instructions:
• You must attempt Problem 1.
• Please attempt at least five of Problems 2, 3, 4, 5, 6, 7, 8.
• If you attempt all eight problems then your final score will be the sum of your score for Problem 1 and the scores for the five remaining problems receiving the highest number points.
• Calculators are not permitted.

1. (20 points) True/False:
 (a) Let $F(x,y) = \begin{bmatrix} u(x,y) \\ v(x,y) \end{bmatrix}$. If F is conservative then $u_y = v_x$.
 (b) Every function $f(x,y)$ defined on \mathbb{R}^2 has a local maximum or local minimum.
 (c) If $f(x,y)$ is a continuous function then $\int_1^0 \int_1^x f(x,y) dy dx = \int_1^0 \int_y^1 f(x,y) dx dy$.
 (d) If C is a closed oriented curve and F is a vector field satisfying $\int_C F \cdot dr = 0$ then F is conservative.
 (e) If u, v are vectors then $\frac{\partial u \times v}{\partial t}$ is the area of the parallelogram spanned by u, v.
 (f) $\nabla f = \frac{d}{dt} f(x + t, y + t, z + t)$.
 (g) The vector line integral of F along the ellipse $x^2 + 5y^2 = 1$ is zero.
 (h) If $u, v, w \in \mathbb{R}^3$ lie in a common plane then $u \cdot (v + w) \times w = 0$.
 (i) Consider the surface $S : z^2 = f(x,y)$. If $P = (x,y, \sqrt{f(x,y)})$ is a point on S with maximal distance from $(0,0,0)$ then P is a local maximum of $g(x,y) = x^2 + y^2 + f(x,y)$.
 (j) Using linear approximation, the value $\sqrt{101 \cdot 10002}$ is estimated as $1000 + 5 + \frac{1}{10}$.

2. Let $P = (2,1,1)$, $Q = (1,0,-1)$, $R = (0,-1,2)$.
 (a) Compute $\overrightarrow{PQ} \times \overrightarrow{PR}$.
 (b) Write down the equation of the plane $\Pi : ax + by + cz = d$ containing the points P, Q, R.
 (c) Find the distance from the origin to Π.

3. Let $F(x,y) = \begin{bmatrix} x^2 - 2xye^{-x^2} + 2y \\ e^{-x^2} + 2x + \cos(y) \end{bmatrix}$.
 (a) Show that F is conservative by finding a potential function $f(x,y)$ such that $\nabla f = F$.
 (b) If C is the oriented curve going from $(1,0)$ to $(-1,0)$ along the semicircle $x^2 + y^2 = 1$, $y \geq 0$, evaluate $\int_C F \cdot dr$.

4. Consider the spheres
 $S_1 : x^2 + y^2 + z^2 = 6$, \quad $S_2 : (x-3)^2 + y^2 + (z+1)^2 = 16$.
(a) Determine the tangent plane to S_1 at the point $(1,1,2)$ and the tangent plane to S_2 at the point $(-1,0,-1)$.
(b) Find a parameterisation of the line of intersection L of the tangent planes.
(c) Determine the distance from the centre of S_2 to L.

5. (a) Classify the critical points of the function
$$f(x,y) = x^3 - y^2 - xy + 1$$
(b) Determine the absolute maximum of $f(x,y)$ on the triangle having vertices $(0,0), (-1,0), (0,1)$
Hint: consider the extrema of $f(x,y)$ on the interior of the triangle and on the boundary of the triangle.

6. (a) Let $f(x,y) = x + y$ and D be the region bounded between the x-axis and and the parabola $y = 1 - x^2$, $1 \leq x \leq 5$. Compute
$$\int \int_D f \, dA$$
(b) Evaluate the integral by changing the order of integration
$$\int_0^3 \int_{x^2}^9 xe^{-y^2} \, dy \, dx$$

7. (a) Given below is the level curve diagram of a function $f(x,y)$. Mark the points on the circle C where the extrema to the constrained optimisation problem
$$\text{max. } f(x,y)$$
$$\text{subject to } C$$
can occur.

(b) Let $\mathbf{v} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ Find the point $P = (x_0, y_0)$ on the ellipse $E : x^2 + 4y^2 = 1$ such that $\overrightarrow{OP} \cdot \mathbf{v}$ is maximised.
8. (a) Draw the region D', described in polar coordinates by $\pi/4 \leq \theta \leq 3\pi/4$, $0 \leq r \leq 2$.

(b) Let $f(x, y) = y - x$. Using the linear change of coordinate formula, compute

$$\int \int_{D'} f dA$$

(Hint: if $\theta \in [0, 2\pi]$ then $M_{\theta} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$ is the matrix corresponding to the ‘rotate by θ counterclockwise’ linear transformation.)