Section 2.4, 2.5

The Derivative and Chain Rule

Learning Objectives:
- Understand the definition and basic properties of the derivative of a vector-valued function of several variables.
- Learn how to use the Chain Rule for functions of several variables.

Keywords: matrix of partial derivatives, the derivative, Chain Rule

The derivative of scalar-valued functions

Let \(f : X \subseteq \mathbb{R}^2 \rightarrow \mathbb{R} \) be a function of two variables. The gradient of \(f \) at \(a \) is the (row) vector

\[
\nabla f(a) = \begin{bmatrix} f_x(a) & f_y(a) \end{bmatrix}
\]

Recall: the linearisation of \(f \) at \(a = (a, b) \in X \) is

\[
L(x, y) = f(a, b) + f_x(a, b)(x - a) + f_y(a, b)(y - b)
\]

which we may rewrite as

\[
L(x) = f(a) + \nabla f(a)(x - a), \quad x = \begin{bmatrix} x \\ y \end{bmatrix}
\] (1*)

The product here is multiplication of the \(1 \times 2 \) matrix \(\nabla f(a) \) with the \(2 \times 1 \) matrix \(x - a \).

Remark:

1. Note the analogy with the equation of a tangent line of the graph of a single variable function:

\[
y = f(a) + f'(a)(x - a).
\]

Thus, the gradient \(\nabla f(x) \) plays a role analogous to the derivative.

2. The above remarks generalise to scalar-valued functions \(f : X \subseteq \mathbb{R}^n \rightarrow \mathbb{R} \), where we define the gradient of \(f \) at \(a \) to be the \(1 \times n \) row vector

\[
\nabla f(a) = \begin{bmatrix} f_{x_1}(a) & f_{x_2}(a) & \cdots & f_{x_n}(a) \end{bmatrix}
\]

Differentiability of vector-valued functions

Suppose that \(f : X \subseteq \mathbb{R}^n \rightarrow \mathbb{R}^m \) is a vector-valued function, \(f(x) = (f_1(x), \ldots, f_m(x)) \), with each \(f_1, \ldots, f_m : X \subseteq \mathbb{R}^n \rightarrow \mathbb{R} \) a scalar-valued function.
Define the matrix of partial derivatives of \(f \) at \(a \in X \), or the Jacobian matrix of \(f \) at \(a \), to be the \(m \times n \) matrix \(Df(a) \) having \(i \)th row \(\nabla f_i(a) \):

\[
Df(a) = \begin{bmatrix}
\frac{\partial f_1}{\partial x_1}(a) & \frac{\partial f_1}{\partial x_2}(a) & \cdots & \frac{\partial f_1}{\partial x_n}(a) \\
\frac{\partial f_2}{\partial x_1}(a) & \frac{\partial f_2}{\partial x_2}(a) & \cdots & \frac{\partial f_2}{\partial x_n}(a) \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial f_m}{\partial x_1}(a) & \frac{\partial f_m}{\partial x_2}(a) & \cdots & \frac{\partial f_m}{\partial x_n}(a)
\end{bmatrix}
\]

We write \(Df(x) \), or simply \(Df \), for the \(m \times n \) matrix whose \(ij \)-entry is \(\frac{\partial f_i}{\partial x_j}(x) \), and call it the Jacobian of \(f \).

Remark: If \(f(x) \) is a scalar-valued function then \(Df(x) = \nabla f(x) \); if \(r(t) \) is a path in \(\mathbb{R}^n \) then \(Df_r(t) = r'(t) \) computes the velocity vector of \(r(t) \).

Define the linearisation of \(f \) at \(a \in X \) to be the function

\[
L(x) = f(a) + Df(a)(x - a), \quad x \in \mathbb{R}^n
\]

The product here is multiplication of the \(m \times n \) matrix with the \(n \times 1 \) matrix \(x - a \).

In particular, \(L(x) \in \mathbb{R}^m \).

Example: Consider the function

\[
f : \mathbb{R}^2 \to \mathbb{R}^3, \ (x, y) \mapsto (x^2 + y, 2xy, x + y^2)
\]

Then,

\[
Df(x) = \begin{bmatrix}
2x & 1 \\
2y & 2x \\
1 & 2y
\end{bmatrix}
\]

Differentiability of \(f(x) \)

Let \(f : X \subseteq \mathbb{R}^n \to \mathbb{R}^m \) be a vector-valued function. We say that \(f \) is differentiable at \(a \in X \) if all partial derivatives \(f_{x_i}(a) \) exist and if

\[
\lim_{x \to a} \frac{f(x) - L(x)}{|x - a|} = 0
\]

If \(f \) is differentiable for every \(a \in X \) then we say that \(f \) is differentiable.

There are analogous results as for the two variable case.

Sufficient Condition for differentiability

Let \(f : X \subseteq \mathbb{R}^n \to \mathbb{R}^m, a \in X \). If all partial derivatives \(f_{x_i}(x) \) are continuous nearby to \(a \) then \(f \) is differentiable at \(a \).
Necessary Condition for differentiability

Let \(f : X \subseteq \mathbb{R}^n \to \mathbb{R}^m, \ a \in X \). If \(f \) is differentiable at \(a \) then \(f \) is continuous at \(a \).

Moreover, we can reduce differentiability of vector-valued functions to the differentiability of its component functions

Let \(f : X \subseteq \mathbb{R}^n \to \mathbb{R}^m, f(x) = (f_1(x), \ldots, f_m(x)), \ a \in X. \) If \(f_1, \ldots, f_m \) are differentiable at \(a \) then \(f \) is differentiable at \(a \).

What is the derivative?

Observe the similarity between the linearisation of \(f \) at \(a \)

\[
L(x) = f(a) + Df(a)(x - a)
\]

and function whose graph is the tangent line of a single variable function \(f(x) \):

\[
L(x) = f(a) + f'(a)(x - a)
\]

Define the ‘multiplication by \(Df(a) \)’ linear map

\[
T_{Df(a)} : \mathbb{R}^n \to \mathbb{R}^m, \ x \mapsto Df(a)x
\]

then the linear map \(T_{Df(a)} \) plays the role of the derivative.

The derivative of a vector-valued function \(f \) of several variables is the linear map defined by the Jacobian of \(f \).

Remark: Identifying a linear map with its standard matrix, we will also say that \(Df(a) \) is the derivative of \(f(x) \) at \(x = a \).

The Chain Rule

Recall the Chain Rule for functions of a single variable \(x \): let \(f(x), g(x) \) be differentiable functions defined at \(x = a \). Then,

\[
(f \circ g)'(a) = f'(g(a))g'(a)
\]

In words: the derivative of a composition is an appropriate product of derivatives.

If \(f = Y \subseteq \mathbb{R}^m \to \mathbb{R}^p, \ g : X \subseteq \mathbb{R}^n \to \mathbb{R}^m \) are functions of several variables for which the composition \(f \circ g \) makes sense (i.e. \(g(u) \subseteq Y \), for any \(u \in X \)) then it’s reasonable to expect the following analog of \((*)\):

\[
D(f \circ g)(a) = Df(g(a))Dg(a)
\]

This is the Chain Rule for functions of several variables.

Remark:
1. The product on the right-hand side of (**) is the product of the $p \times m$ matrix $Df(g(a))$ with the $m \times n$ matrix $Dg(a)$.

2. To prove the Chain Rule you need to show an equality of matrices: this means you must show that the ij entry on the LHS equals the ij entry on the RHS. The ij entry on the LHS is $\frac{\partial (f \circ g)}{\partial u_j}(a)$ and the ij entry on the RHS is $\nabla f_i(g(a))(Dg(a))_j$, where $(Dg(a))_j$ is the j^{th} column of $Dg(a)$. That these two quantities are equal now follows from the Chain Rule for single variable functions and the definition of partial derivatives.

Example:

1. Let $f(x, y) = x^2 + 3y^2$, $r(t) = (2t, t^2)$. Then, $f \circ r : \mathbb{R} \to \mathbb{R} : t \mapsto 4t^2 + 3(t^2)^2 = 4t^2 + 3t^4$. In this case, $D(f \circ r)(t)$ is precisely the derivative $(f \circ r)'(t) = 8t + 12t^3$.

 Let’s compute the right-hand side of the Chain Rule: we have

 $$Dr(t) = r'(t) = \begin{bmatrix} 2 \\ 2t \end{bmatrix}$$

 $$Df(x) = \nabla f(x) = \begin{bmatrix} 2x \\ 6y \end{bmatrix} \implies Df(r(t)) = \begin{bmatrix} 4t \\ 6t^2 \end{bmatrix}$$

 Hence,

 $$Df(r(t))Dr(t) = \begin{bmatrix} 4t \\ 6t^2 \end{bmatrix} \begin{bmatrix} 2 \\ 2t \end{bmatrix} = 8t + 12t^3$$

2. Let $h(x, y, z) = x + yz$ and

 $$f : \mathbb{R}^2 \to \mathbb{R}^3 : (x, y) \mapsto (x^2 + y, 2xy, x + y^2)$$

 Then,

 $$(h \circ f)(x, y, z) = h(x^2 + y, 2xy, x + y^2)$$
 $$= (x^2 + y) + (2xy)(x + y^2)$$
 $$= x^2 + y + 2x^2y + 2xy^3$$

 Hence,

 $$D(h \circ f)(x) = \nabla(h \circ f)(x) = \begin{bmatrix} 2x + 4xy + 2y^3 \\ 1 + 2x^2 + 6xy^2 \end{bmatrix}$$

 Computing the right-hand side of (**):

 $$Dh(x) = \nabla h(x) = \begin{bmatrix} 1 \\ z \\ y \end{bmatrix} \implies Dh(f(x)) = \begin{bmatrix} 1 \\ x + y^2 \\ 2xy \end{bmatrix}$$

 and

 $$Df(x) = \begin{bmatrix} 2x \\ 2y \\ 2x \\ 1 \\ 2y \end{bmatrix}$$

 Then,

 $$Dh(f(x))Df(x) = \begin{bmatrix} 1 \\ x + y^2 \\ 2xy \end{bmatrix} \begin{bmatrix} 2x \\ 2y \\ 2x \\ 1 \\ 2y \end{bmatrix} = \begin{bmatrix} 2x + 4xy + 2y^3 \\ 1 + 2x^2 + 6xy^2 \end{bmatrix}$$
3. Let
\[f : \mathbb{R}^2 \to \mathbb{R}^3, \quad (x, y) \mapsto (x^2 + y, 2xy, x + y^2) \]
\[g : \mathbb{R}^3 \to \mathbb{R}^2, \quad (u, v, w) \mapsto (u^2 + v, 3w - u) \]

Then,
\[f \circ g(u) = ((u^2 + v)^2 + 3w - u, 2(u^2 + v)(3w - u), u^2 + v + (3w - u)^2) \]

and
\[D(f \circ g)(u) = \begin{bmatrix} 4u^3 + 4uv - 1 & 2u^2 + 2v & 3 \\ 12uw - 6u^2 - 2v & 6w - 2u & 6v + 6u^2 \\ 4u - 6w & 1 & 18w - 6u \end{bmatrix} \]

Computing the righthand side of (\(**\)):
\[Df(x) = \begin{bmatrix} 2x & 1 \\ 2y & 2x \\ 1 & 2y \end{bmatrix} \quad \Rightarrow \quad Df(g(u)) = \begin{bmatrix} 2(u^2 + v) & 1 \\ 2(3w - u) & 2(u^2 + v) \\ 1 & 2(3w - u) \end{bmatrix} \]

and
\[Dg(u) = \begin{bmatrix} 2u & 1 & 0 \\ -1 & 0 & 3 \end{bmatrix} \]

Hence,
\[Df(g(u))Dg(u) = \begin{bmatrix} 2(u^2 + v) & 1 \\ 2(3w - u) & 2(u^2 + v) \\ 1 & 2(3w - u) \end{bmatrix} \begin{bmatrix} 2u & 1 & 0 \\ -1 & 0 & 3 \end{bmatrix} = \begin{bmatrix} 4u^3 + 4uv - 1 & 2u^2 + 2v & 3 \\ 12uw - 6u^2 - 2v & 6w - 2u & 6v + 6u^2 \\ 4u - 6w & 1 & 18w - 6u \end{bmatrix} \]