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INTRODUCTION

On this field trip we will examine sites near Burlington, Vermont where
alkalic dikes and fractures are exposed that could be related to Cretaceous
rifting. The setting of these and many similar features is the structural (as
opposed to sedimentary) basin of the Lake Champlain Valley, which invites
comparison with younger and better-studied continental rifts, such as the Rio
Grande Rift of eastern New Mexico or the Gregory Rift of eastern Africa. The
validity of such an interpretation depends upon careful study of the tectonic
history of the Valley, especially the timing of faulting and its relation to
magmatism.

The Lake Champlain Valley between Vermont and New York is from 20 to 50
km wide and 140 km long between the northern Taconic Mountains and the
Canadian horder. Topographically, the Taconic klippe interrupts the southern
Champlain Valley, but structurally the same valley terrane widens to connect
with the northern Hudson Valley southeast of the Adirondack Mountains. The
surface of the lake is only 29 m above sea level while the deepest part of the
lake, near the western side, approaches 120 m below sea level. Hany peaks of
the Adirondacks to the west and the Green Mountains to the east rise above
1000 m, providing considerahle relief to the Valley margins. The bhest
exposures exist along the lake shores, some river and stream banks, highway
cuts, and quarries. The glacial soils on many hillsides are thin enough to
reveal bedrock rubble (including dike float), but much of the area is also
covered by thick, glacial lake and marine sediments that make good farmland
but effectively hide the bedrock and structures.

The six stops of this field log include outcrops of the three major
igneous rock types - monchiquite and camptonite (varieties of volatile-rich
alkali basalt), and bostonite (hypabyssal trachyte) - a bimodal association
characteristic of many regions of intra-plate or rift volcanism. The timing of
the faulting that produced the Champlain Valley may be constrained by physical
or geographic associations with the Early Cretaceous (115-135 Ma) magmas.
Although no intersections of major-displacement faults with dikes are clearly
exposed in the Champlain Valley, there are good outcrops at these six stops
that show minor faults and fractures helieved (or hoped) to be related to the
major tectonic events.

Dikes and other intrusive rocks

Figure 1 (modified from McHone and Corneille, 1980) shows locations for
many of the igneous intrusions of the central Lake Champlain Valley. As shown
by other regional maps (McHone, 1984), dikes become scarcer southward from
Vergennes, but are fairly abundant across the Taconics and Green Mountains to
the west and southeast of Rutland, Vermont. The northern Champlain Valley is
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Figure 1. Locations and orientations of alkalic dikes in the central Lake

Champlain Valley of Vermont and New York (after McHone and Corneille,

1980).

F = fault-related dike (Table 1).
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curiously devoid of dikes from North Hero well up into Quebec, but similar
dikes are again abundant in the Monteregian Hills province ESE of Montreal,
Lamprophyre dikes occur with lesser frequency westward as far as the east-
central Adirondack Mountains, and are scattered but continuously present
eastward across Vermont, New Hampshire, and the southern half of Maine.

Special studies of Champlain Valley igneous rocks start with early
publications by Thompson (1860) and Hitchcock (1860), followed by
petrographical and theoretical work by Kemp and Marsters (1893), Shimer
(1903), Alling (1928), Hudson and Cushing (1931), Laurent and Pierson (1973),
and McHone and Corneille (1980). Other geologists who mention or describe
dikes as part of regional mapping studies are listed in the references section
of this paper. The Champlain Valley intrusions are now well located and
studied petrographically, and a small number have been chemically analyzed by
Kemp and Marsters (1893), Laurent and Pierson (1973), and McHone and Corneille
(1980). According to Ratte' and others (1983), several unpublished thesis
studies of the dikes are known, although they vary in availability and
therefore usefulness.

As indicated on Figure 1, the dikes apparently separate into two swarms
across the lake into New York. At least 80 dikes of monchiquite, a few
camptonite dikes, and no trachyte types are found in the northern swarm across
Milton, Malletts Bay, southern Grande Isle, and the Plattsburgh area (Shimer,
1903; Fisher, 1968; McHone and Corneille, 1980). The monchiquite dikes lack
significant feldpar, and are commonly rich in Ti-augite, calcite, kaersutite,
and/or olivine or phlogopite, with analcime in the matrix. Some of the dikes
approach alnoite or carbonatite in composition. Although we will not visit the
northern swarm because of time constraints, monchiquite dikes in this area are
exposed along Route 2 west of I-89 (Table 1) and in several roadcuts along I-
89 east of Malletts Bay. Diment (1968) has outlined a strong geophysical
anomaly east of Plattsburgh that probably is caused by an unexposed gahbroic
pluton, similar to some plutons of the Monteregian Hills in ad jacent Quebec.

Monchiquite, camptonite, and all of the trachytic dikes occur in the
southern swarm (over 150 dikes) across from Burlington and Charlotte, Vermont
to Willsboro and Essex, New York (Fig. 1). The trachytic dikes are commonly
called bostonite (fine-grained, alkali-feldspars in clusters), despite the
wide variations of beige, brown, and red colors with anorthoclase, albite, and
quartz phenocrysts in an altered felsic matrix. Some show corroded oxybiotite
grains. Camptonite has more plagioclase (restricted to groundmass) than
analcime, much augite and rarely olivine, and variable amounts of kaersutite
(a Ti-rich variety of brown hornblende), Amygdules and ocelli (formed as
immiscible felsic-magma blebs) are common in camptonite. Phenocrysts of
augite and kersutite are visible.

For most of the Champlain Valley, east-west to N80W dike trends are the
rule (Fig. 1). Northeasterly trends are more common in New York and also to
the east in Vermont. The trachytes show much more variation, especially near
the Barber Hill stock in Charlotte, where Gillespie (1970) observed a radial
pattern. A massive trachyte sill, covering a square mile or more, is exposed
at Cannon point and inland south of FEssex, New York (Buddington and Whitcomb,
1941). Trachyte dikes, sills, and intrusive breccias are abundant in southern
Shelburne Point and probably indicate another syenitic pluton at shallow
depth.
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Intrusion ages

The few radiometric dates for Champlain Valley igneous rocks compare well
with Early Cretaceous dates of the Monteregian Hills of ad jacent Quebec, and
for other intrusions of the New England-Quebec igneous province of McHone and
Butler (1984). McHone (1984) summarized radiometric ages of northern New
¥ngland dikes, including two for local lamprophyre dikes. Zartman and others
(1967) found a Rb-Sr age of 136 +/-7 Ma, using phlogopite from a dike of
lamprophyre (ouachitite or monchiquite) on the western shore of Grande Isle.
Using kaersutite separated from a monchiquite dike located about 35 km to the
east (in the Green Mountains), McHone (1978) obtained a K-Ar age of 130 +/- 6
Ma. To the south, in the northern Taconics west of Rutland, Vermont,
camptonite dikes have dates of 105 +/- 4 Ma and 110 +/- 4 Ma (McHone, 1984),
In the eastern Adirondacks, Isachsen (1985) verbally reported K-Ar dates of
113, 123, and 127 Ma on camptonite dikes, and 137 and 146 Ma on dikes that
apparently are monchiquite,

Armstrong and Stump (1971) reported a X-Ar date of 111 +/- 2 Ma for the
syenitic Barber Hill stock at Charlotte, using a mis-acknowledged sample
provided by Gillespie (1970) of "slightly altered" biotite. The Barber Hill
stock is considered to be cogenetic with the bostonite (trachyte) dikes of the
area. Seven hostonite dike samples fall along a whole-rock Rb-Sr isochron of
125 +/- 5 Ma (McHone and Corneille, 1980). Partial Rb-Sr data collected by
Fisher (1968) for the Cannon Point trachyte sill, across the lake at Essex,
New York, indicated an age of "less than 140" Ma, but also fits onto the 125
Ma isochron. Isachsen (1983, pers. comm.) has found a K-Ar age of 120 Ma for
a trachyte dike in Willsboro, New York. The 111 Ma date for Barber Hill could
be reinterpreted as a cooling date, about 10 Ma later than intrusion.

Two monchiquite dikes are crosscut by a bostonite dike and a bostonite
sill along the shoreline SW of Shelburne Point (Kemp, 1893; Welby, 1961).
Welby (1961, p. 188) reported that a camptonite dike crosscuts the Barber Hill
syenite "near the crest of the hill at its northwest corner". In combination
with the radiometric data, these crosscutting relationships are consistent
with ages generally about 135 Ma for monchiquite, 125 Ma for
trachyte/bostonite/syenite, and 115 Ma for camptonite, plus or minus 5 to 10
Ma for each type. These ages use old radiometric constants, and dates
recalculated to new constants are 3 to 5 Ma older but do not change the age
relationships.

Faults and faulting

Published maps of the Champlain Valley by Hudson (1931), Ouinn (1933),
Welby (1961), Doll and others (1961), Fisher (1968), and Isachsen and Fisher
(1971) all seem to show different high-angle faults. Figure 2 is a somewhat
generalized summary map, omitting some of the more imaginative faults
suggested by Hudson (1931), Ouinn's 1931 dissertation work included
calculations of the percentage and directions of crustal extension caused by
normal faulting in the region, and are reproduced in Figure 2. The north-
south St. George fault system along the eastern side of the Valley is
described by Stanley (1980), partly based upon his highly-valued student
mapping projects. Stanley and Sarkesian (1972) and Stanley (1974) have made
careful analyses of Jjoint and fault strains, quartz lamellae orientations, and
other structures to interpret stress patterns for these features.
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Most of the high-angle faults can be grouped as "longitudinal faults"
(roughly N-S) or "cross faults" with both E-W and NE-SW trends. Geologists
who originally mapped these structures related the faults to Paleozoic
tectonic events, perhaps associated with westward movements of the Champlain
and "inesburgh thrust faults (Taconic/Acadian). Welby (1961) makes it clear
that many cross faults have offset the Champlain thrust, and that cross faults
also offset longitudinal faults (e.g. Stanley, 1980). The fault pattern in
New York (Fig. 2) appears to show that several of the major longitudinal
Adirondack border faults (Isachsen and Fisher, 1971) crosscut NE-trending
Adirondack faults. Several longitudinal and cross faults of the eastern
Adirondack border are well exposed, such as at Port Henry (Mcllone, 1987).

The high-angle faults are usually described as having dip-slip or normal
offsets, but Stanley and Sarkesian (1972) and Stanley (1974) cite evidence for
strike-slip or wrench movements of cross faults in the Shelburne Bay area. The
faults have brittle features, and apparently moved at shallow (less than 2 km)
depth (Stanley, 1974). Because vertical offsets of at least 850 m are
preserved along some of the faults, roughly 2 to 3 km of post-faulting erosion
of overlying rock is indicated. Tf the stratigraphy of the Champlain Valley
was once complete with Silurian and Devonian or younger units, much uplift and
erosion must have preceded faulting.

Isachsen (1975) and Isachsen and others (1983) argue that the Adirondack
dome could be young, perhaps with Holocene uplift. The relief of the
Adirondacks relative to the Champlain Valley is clearly based on movements
along faults that are part of the Champlain Valley system, and so Burke (1977)
proposed that the Champlain and adjacent Lake George valleys are grabens
developed by Neogene continental rifting. Crough (1981) proposed uplift
during Cretaceous-early Tertiary time for the Adirondacks and New England,
hased on fission tracks, stratigraphic arguments, and the presence of the
Cretaceous intrusions, and he promoted a "hotspot track' model for the events.
The absence of Triassic and Jurassic sediments in the Champlain Valley could
indicate a higher elevation for the area during the Early !esozoic, when
Atlantic rifting produced large, deep sedimentary basins in southeastern New
England and offshore (McHone, 1982). Finally, the present Champlain
topography must predate the Miocene Brandon lignite and kaolin deposits,
preserved along the eastern margin of the Valley by the Green Mountain front.

With the ages of the Champlain intrusions fairly well known, crosscutting
relationships with the faults are critical to the tectonic model.
Infortunately, no intersections of dikes with major faults are clearly
exposed, although a few are close! Locations where dikes intersect Champlain
faults are listed in Table 1, and both pre- and post-dike fault movements are
indicated. A major problem is estimating true offset, because at several of
the exposures only minor apparent lateral offset may result from a great deal
of mainly dip-slip motion. Future work with a portable magnetometer could
help to show the nature of fault intersections with mafic dikes under shallow
cover. Faulting and dike intrusion may be part of the same rifting event, as
originally envisioned by Kumarapeli and Saull (1966) for a larger region that
includes the Champlain Valley.
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TABLE 1. FAULTED (?) AND FAULT-CUTTING DIKES OF THE LAKE CHAMPLAIN VALLEY

Dike Data

Location

Description and Reference (number)

Monchiquite
N6SY 15" wide

" Lamprophyre
10" wide

Lamprophyre
3' wide

Camptonite
N&3W, 78N
148 cm wide

Trachyte
M55E, 81SE
6-11 cm

Camptonite
N24W,79 SW
0-79 cm wide

Camptonite
(no data)

Trachyte

E-W ()
Monchiquite
E-W, 2' wide

Trachyte
c.N85%, 75N
c.22 ' wide

Trachyte sill
(no data)

Monchiquite
NB4YW 34" wide

Monchiquite
(2 dikes)
Monchiquite
N83W, 75HE
78 cm wide

Crosses northern
Juniper Island

End of Clay Point,
Colchester

lubbell's Falls,
Winooski River, Essex

E. side Rte. 7, 0.5
miles N. of Charlotte
intersection

E. side Rte. 7, 0.8
miles N. of Shelburne.
25 m N. of major fault

Winooski River below
Woolen Mill, Winooski

North end Monkton Ridge
c.2 miles SW Hinesburgh

Near bridge over Lewis
Creek, North Ferrishurg

Shoreline at Orchard
Point, Shelburne

Crosses Reber Road 1.2
miles SW of Rte. 22 in
Willshoro

1 mile S¥W of Fssex
Village, SE from road

Just north of Beauty
Bay, Valcour Island

SE corner of Valcour
Island

North side Rte. 2,
c.1.2 miles W. of I-89
exit for Grande Isle

Dike shows 15" offset on NE side of
island (1)

Right-lateral offset of 3' along a N-S
fault. Shale is also rotated (1,4)

2 left-lateral offsets reported (1),
but no offsets seen by Perkins (4)

Fault about N3OE, 69SE, subparallel to
shale cleavage. Apparent offset is 106
cm left-lateral (not true offset) (2)

Silicified, fills fault plane (offset
unknown) in Winooski dolostone. Green
color may relate to Mg reaction (?)

2 right- and 1 left-lateral offsets
of 19 to 64 cm, along N5W to N28E
joints and syn-intrusional? fault (3)

Cuts minor N-S normallfault associated
with major N-S St. George fault (3)

Possibly offset by N8OW North
Ferrisburg fault (5)

One of 2 dikes cut by trachyte, offset
1-2', no other data (1)

Silicified "keratophyre" (6). Aligns
(no offset) on both sides of Adirondack
border fault (disputed by Isachsen)

Abruptly terminates at N50E normal
fault, but not well exposed (6)

“Jalls of dike are offset 1'11",
down to north (7)

SW dip due to drag rotation along the
ad jacent Valcour Cove fault (7)

70 cm offset, upper side to North along
sub~horizontal fault. Dike brecciated
at fault. True offset unknown.

References: (1) Thompson, 1861; (2) McHone, 1978; (3) Stanley, 1980; (4)
Perkins, 1908; (5) Welby, 1961; (6) Buddington and Whitcomb, 1941;
(7) Hudson and Cushing, 1931
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ITINERARY

The starting point is the parking lot behind Perkins Geology Hall on the
western side of the lIniversity of Vermont, off Colchester Avenue (Fig. 3).
Cars can usually be left here on weekend days or when the University is not in
session. Otherwise, get a visitors permit. Refer to Figure 3 for map
locations of stops 1 - 6, Traffic is commonly heavy and fast along Route 7,
so please take your time and drive carefully (you can always catch up later).
At stop 4, parking and access through private property is by special
permission. F¥ood can be purchased at our lunch stop.

The stops are within the Burlington and Mt. Philo 7 1/2' USGS
quadrangles, and are along or within a few miles of U.S. Route 7. The Vermont
Atlas and Gazetteer (David Delorme and Co.), available in local stores, has a
convenient scale and is recommended as well. The local geology is mapped by
Cady (1945), Welby (1961), and in summary by Doll and others (1961). Other
areas of the Champlain Valley that contain dikes are mapped by White (1894),
RBuddington and Whitcomb (1941), Stone and Dennis (1964), and Fisher (1968),
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Figure 3. Location map of field stops and dikes in the Burlington - Shelburne
area, Vermont (adapted from Welby's 1961 geologic map).
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Mileage
Total by Point Description

0.0 0.0 Starting from parking lot behind Perkins Hall (Department
of Geology) at UVM, turn right (east) onto Colchester
Avenue. Street will curve to the north and descend a hill.

0.8 0.8 Bridge over Winooski River. Colchester Avenue becomes
Main Street in Winooski.

0.9 0.1 Turn left (west) at light onto West Canal Street, just
past bridge.

1.1 0.2 Park along street near the Woolen Mill. Walk west through
the parking lot, around the fence and follow path SE down
to the river (about 300 m).

STOP 1. The Cambrian Winooski dolostone at this location shows well-
developed fractures that intersect a camptonite dike, near the end of the
Winooski River gorge called Salmon Hole. The cliff face follows joints
trending between N15W and N25W, about the same trend as the vertical dike
present at the cliff base. Three small-displacement, N-S faults are mapped in
the area (Stanley, 1980, fig. 7). A NSOE joint set crosses both the dike and
dolostone. N30E and N5W fractures are more common in the dolostone than in
the dike, and many of these joints appear only on the east wall above and up
to the dike, but not crossing it.

The dike is a dense and fine-grained augite camptonite, with many small
blue (chalcedony?) amygdules. The dike pinches out or is truncated under sand
near the river to the south, although a thin dike stringer is present into the
water. The main dike extends with some pinch and swell for over 75 m NNW to
its cover near some mill turbine ruins, and is 74 to 79 cm wide. A similar
dike appears on line with the trend at Schamska Park about 1/2 mile to the SSE
and may be connected.

At least three offsets are exposed. The southernmost shows right-lateral
offset of 64 cm where a N28E fracture is exposed in the dolostone wall. The
dike is 48 cm wide in the offset, and the rock is foliated or sheared parallel
to the fracture. The fracture does not appear to extend into the dolostone
west of the dike, and is interpreted as a syn-intrusional feature in which
slip occurred only on the eastern side shortly after or while the magma
conduit opened.

The middle offset is along a fault oriented N2W, 55W that Stanley (1980,
p.26) calls a normal fault of minor displacement, possibly related to the
longitudinal St. George fault system along the eastern Champlain Valley,
Stanley (1980, p.26) states that the fault predates the dike, but about 22 cm
of poorly-exposed left-lateral offset can be observed, with the fault
continuing in the dolostone south of the dike. In addition, the dike is
strongly and closely fractured at this offset.

A third small, right-lateral offset farther north appears to be another
syn-intrusional feature, with a small dike stringer extending through the
fracture opposite the main dike. The fracture is about N70E, 87SE and does
not extend past the dike to the west.
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Return on the same streets past the Geology Department and
UVM (do not follow Route 7 along the river road).

2.3 1.2 Colchester becomes Pearl Street.

2.5 0.2 Turn left (south) onto South Willard Street (reconnect
with Route 7).

3.8 1.3 Roundabout at foot of hill past Dunkin Donuts. Continue
south (Route 7).

4.0 0.2 Turn left (east) onto Hoover Street. Up short hill, park
in quarry (not on grass).

STOP 2. Redstone Quarry. This quarry is owned by UVM and has been used
for many introductory geology field trips. The red Cambrian Monkton quartzite
also contains pale-~yellow dolostone beds at this quarry, and many 19th century
Burlington houses have foundations or walls made of these rocks. Excellent
soft-sediment features are exposed, including ripple marks and hailstone )
impressions. Please do not climb the walls, and stay out of the ad jacent
private property and gardens. )

Three camptonite dikes are exposed in the northern part of the quarry,
The southernmost is 110 cm wide, N85E, 85S, and shows its vertical dimension
well along the wall of the quarry. This dike has small nodules of granite,
metagabbro and gneiss carried up from Grenvillian basement some distance
(several thousand feet?) below, plus several larger dolostone slabs. This is
the "Willard's Ledge" dike mentioned by Thompson (1860, p. 580), which he
believed to be exposed again "a few rods to the east”. Kemp and Marsters
(1893) referred to this dike as an example of "augite camptonite", in which
Ti-augite phenocrysts predominate rather than the brown hornblende that is an
essential part of the camptonite definition. This variety of camptonite has
since been shown to be common.

The northern dike in the quarry is also augite camptonite, N86W, 81N, and
66 cm wide. The middle dike is a narrow stringer of glassy augite camptonite
about 10 m to the south. It is only about 10 m long, pinching out at both
ends with a maximum width of 12 cm. It curves from N80OW (thicker part) to
N55W (thinner).

Joint patterns in the quarry have not been carefully examined for this
report, but an E-W set can be seen, as well as some curving joints like the
fracture filled by the stringer dike. We will note a few of the orientations,
but watch out for radiating fractures around blasting holes. The continuation
of the southern dike eastward into the quarry wall is not clear, and needs
examination.

Return to Route 7 down Hoover Street.

4.5 0.5 Turn left (south) onto Route 7. Be careful! If traffic
is too heavy, turn right and go around the roundabout.

5.4 0.9 Pass under I-189 exchange, continuing S.

8.9 4.t Through light at Jelly Mill Common,
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9.3 0.4 Turn left (southeast) at intersection curve past Dutch
Mill. Watch traffic!

9.4 0.1 Turn left, park in First Baptist Church lot. Walk across
road, through parking lot adjacent to hill, right along
Route 7 highway cut. Stay off the pavement (no need to
cross the highway).

STOP 3. S9 roadcut. This cut is dominated by one large and several
smaller cross faults, and was described by Stanley and Sarkesian (1972). The
exposed surface of the footwall on the major fault is oriented N70E, 75NW,
along which Winooski dolostone has dropped against Monkton quartzite. At
least eight smaller NE and N-S-trending faults are exposed as well, and
slickensides indicate mostly dip movement (near-vertical maximum compression).
Gouge is common, and with the slickensides indicate a brittle environment of
faulting. Stanley and Sarkesian (1972, p. 132) reported that quartz lamellae
at this site indicate NE-SVW compression, interpreted as preceding the final
fault movement.

About 25 m north of the major fault, a narrow (4 to 12 cm wide) green-
colored trachyte dike has intruded a small fault, oriented N54FE, 85 SE in the
Winooski dolostone. Please do not sample any of this dike...it is unique! The
pale grass-green color has not been observed elsewhere, but is believed to bhe
caused by an unknown reaction of the magma with the dolostone. The dike is
silicified but preserves altered alkali feldpar phenocrysts. A strange
texture of frothy brown bubbles is observed in thin section, along with much
dolostone microbreccia incorporated by the dike. An x-ray diffraction pattern
of the rock identified alpha quartz, clay minerals, and smaller peaks of
unknown cause.

In times of light traffic, two N85E monchiquite dikes can be visited just
north of the driveway across the highway at the northwestern end of the
roadcut. The southernmost is very weathered to a light-brown color close to
that of some trachyte dikes. A large group should not try to cross this husy
road. :

Return to Route 7.

9.6 0.2 Turn left (south) CAREFULLY onto Route 7.
10.4 0.8 Through stop light, Shelburne Village.
10,7 0.3 Turn left into parking lot at Harrington's, home of the

"world's best ham sandwich", for lunch stop. A rest room
is available upon polite request. A gas station is nearhy.
Also, Cafe' Shelburne for the elite eater. Please limit
lunchtime to 45 minutes or less.

Return north on Route 7 to Village.

11.0 0.3 Turn left (west) at stoplight in Shelburne Village.
11.1 0.1 Cross railroad track.
11.7 0.6 Road curves right (north).
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12.6 0.9 Stop sign. Continue straight north toward Shelburne
Point.
13.4 0.8 Turn right (east) into parking lot south of large brown

barn. Parking by permission only, do not hlock driveway
(boat repair shop).

Walk east across field toward southern side of hill on the
lake above Shelburne Bay. This is private property of Mr,
Thomas Cabot, and access permission is for this trip only.
Yalk though the woods, down the hill toward the lake.
Assuming normal low Fall lake levels, we will walk along
the shore northward along the hillside. If high water,
stay well above the lake, and travel around the eastern
hillside through the woods, where thick float can be seen.

STOP 4. Shelburne Point intrusive breccia. At least four trachyte
(bostonite) dikes are found around the eastern side of this point, three of
which contain abundant xenoliths of many Paleozoic and Proterozoic rocks that
underlie the region. The intrusive breccias have received attention from
ditchcock (1860), Kemp and Marsters (1893), Perkins (1908), Powers (1915),
Hawley (1956), and Welby (1961). The most southerly breccia dike is about 4
feet wide and is more than half xenoliths by volume, including many
GGrenvillian basement rocks as well as shale, quartzite, limestone, and
porphyritic syenite cobhles. A great deal of similar material occurs as float
along the hillside above and southwest of this dike. At least one other
breccia dike farther north is very narrow (a foot or so), and has been eroded
into a "chasm squeeze" into which you must fit sidewise for sampling.

¥emp and Marsters (1893) suggested that the abundant xenoliths are
derived from breccia along an older fault that has been intruded hy bostonite
magma. Many of the xenoliths are remarkably rounded, almost like stream
cobbles. Similar breccia dikes, perhaps the same ones, also appear on the
southwest shore of Shelburne Point. Welby (1961) has mapped a high-angle
fault that displaces the Champlain thrust nearby to these breccias, lending
support to Kemp's idea. The concentration of trachytes and their syenite
xenoliths (autoliths?) indicates the presence of a syenitic pluton directly
heneath southern Shelburne Point. Other xenolith-rich dikes across the region
are also associated with faults (McHone and Williams, 1985).

Return the same route back to cars, and turn left (south).
14.2 0.8 Intersection near Shelburne Farms. Turn left (east).

14.9 0.7 Turn left (north) into large parking area of Shelburne Ray
Access. Valk out onto rocky peninsula.

STOP 5. Shelburne Bay Access. Joints and small-displacment faults are
well exposed at this classic teaching site, described by Stanley (1974).
North-south and east-west faults show bhoth dip and strike-slip offsets of less
than 30 cm. Some E-W fractures are extensional and are filled with quartz.
Careful analysis of the fractures by Stanley (1974) and his students has shown
that an early set developed with generally E-W principle compressive stress,
followed by a second set with roughly N-S compression. Low confining stress
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conditions indicate shallow depths (less than 2 km) during deformation.
Although Stanley (1974) originally related the Shelburne Access fracturing to
Acadian (Devonian) tectonism, a Mesozoic time of deformation is also
reasonahle for at least some of these features. Stanley (1974) especially
pointed out the proximity to the major Shelburne Point cross fault near to the
previous stop (and almost visible from the access rocks).

Return back the same way (turn right from the parking lot)

15.6 0.7 Rack at intersection near Shelhurne Farms, turn left
(south). Continue back (SE) to Shelburne.

17.2 1.6 Turn right (south) onto Route 7 at stop light, Shelburne
Village.

12.0 0.8 Through blinlki.ng yellow light.

18.2 0.2 Gecewicz ﬁarms fruit stand on left.

20.9 2.7 s0od view of Champlain Valley.

21.7 0.8 Jones Hill on left, ﬁarber Hill {s low hill in vallev

about one mile directly ahead.

22.2 0.5 Intersection with F-5 (Charlotte). Turn around hyv turning
left into gas station, return north on Route 7 so that we
can park on the east side of the highway.

22.7 0.5 Park off pavement along east side of Route 7.

STOP 6. Jones Mill dike. This dike was exposed by highway construction
in the late 1960's. The Champlain thrust fault has capped this hill and Pease
‘lountain to the south, as well as Mt. Philo and others of the "Red Sandrock
Range", with durable Monkton Quartzite. According to Welhy (1961), younger
cross faults cut the Champlain thrust, contributing to erosion that has
isolated these hills from one another. As at the Pease Mountain roadcut
farther south on Route 7, the Therville shale is highly contorted and folded.
The offset visible in this camptonite dike partly follows shaley cleavage, bhut
it is clear that the dike crosscuts most of the deformation. Although
generally covered by rubble, the southern end of the offset is a sharp hreak.
However, the dike along the offset is fine-grained like the chill margin, so
it may an intrusional feature . As listed in Tahle 2, the petrography of this
dike shows it to be a normal camptonite, with modal variations that might bhe
attributed to cooling rates. Chemical analyses of two of the five samples
shows that the dike magma was typical hasanite, excent for its hish volatile
content.

Trachyte dikes are exposed in the Pease Mountain hillside and roadcut to
the south, and they trend toward Rarber Hill, the top of a small (?) svenitic
stock nearhy to the west of Pease Mountain. Ambitious peologists might also
Attempt to visit other offset dikes Jlisted in Table 1, some of which lack
serious study,

Fnd of trip. Return north to T-189 for easy access to
I-83 and Montpelier.
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TABLE 2. MODAL AND CHEMICAL ANALYSES ACROSS THE JONES HILL DIKE, CHARLOTTE
SAMPLE A B C D E B D
Ti-augite 18.9 23.0 21.6 25.8 17.1 Si02  43.9 44,57
Alt. cpx 2.3 tr. tr. tr. tr. Ti02 2.31 2.16

 Kaersutite 8.7 27.1 25.7 31.2 17,2 A1203 14.6 13.71
Plagioclase 7.5 25.0 25.1 22.2 15.8 Fe203 2.24 n.a.
Calcite¥ 2.6 2.7 3.9 1.1 4.2 FeO 7.07 9.,35%x
Selvage¥®¥* 5] 4 0.0 0.0 0.0 36.7 MnO 0.17 0.18
Apatite 1.2 2,3 1.9 1.2 0.8 MgO 6.71 8.39
Mag.+Pyr. 7.4 11.4 5.0 7.2 8.2 Ca0 9.71 10.44
Analcime tr. 8.5 14.7 10.3 tr. Na20 3.68 2.94
Serpentine* tr, tr. 2.1 1.0 tr. K20 2.30 2.67

P205 0.85 0.55
H20+ 1.81 0.90
*mostly replacing oliving phenocrysts C0o2 3.49 3.41
** total iron as Fe0 H20- 0.63 0.25
**mostly devitrified glass, incl. microlites of
plag., kaers., opaques, analcime, & apatite Total 99.47 99,52
n.a. = not analyzed
ppm Rb 49 79.6
Note: A - E are fist-size samples taken across Sr 1311 1130
the 148-cm dike from north to south. Approximate Y n.a. 25.2
locations: A = 0 cm (north contact); B = 17 cm; 7Zr 336 230
C=2353cm; D=95cm; E = 148 cm (south contact), \ n.a. 189
Modes are by 1000-point counts of single sections. Cr n.a. 444
Source: unpub. 1978 PhD dissertation by Mclione. Ni n.a. 168
Ba 1140 1150
Sr87/Sr86 0.7046 n.a.
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