PH 500 Problem Set #5

So far we have focused on two-state systems — systems where the states were two-
component vectors. This was just convenient for calculations; none of the basic concepts
actually depended on this limitation. Now we expand the situation slightly and consider
higher-dimensional cases. Again, the things I want you to do are in bold.

1. Suppose we have two spins. Then our state has four components. This four is not 2+ 2,
it’s 2 x 2 (so for three spins, there are eight states). The states can be written as
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where each basis element is now made up of an eigenstate of ¢, for the first spin and
an eigenstate of &, for the second spin. For a normalized state, the coefficients satisfy
la? + [b? + |¢|> + |d|* = 1. Now we have angular momentum operators Sy, Sa., Siy,
S2y7 Si,, and S,,. BEach operator acts (just like before) on the corresponding spin, and
leaves the other spin alone. And all the operators for the first spin commute with all
the operators for the second spin.

We can imagine putting these two spins into a magnetic field as before, without consid-
ering any interactions between them. The Hamiltonian is then
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where &4 acts on the first spin and &2 acts on the second spin. For B = ByZ, Write
this Hamiltonian as 4 x 4 matrix in the basis given above.

Since the spins don’t interact with each other, the first spin and the second spin can be
treated separately. So we have just written down two copies of the same problem. We
could start each spin in a different state and find its time evolution using the results
from the previous problem set.

Next we’ll let the spins interact. For example, suppose we consider a new possible term
in the Hamiltonian:
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This describes an interaction in which the two spins want to align with each other (which
happens in real spin systems).

We still have a 4 by 4 Hamiltonian, which in principle we could just diagonalize to find
the energy eigenstates. But it will be helpful to develop some techniques to make this
job simpler, especially since we will eventually want to be able to deal with large (or
even inifinte) dimensional matrices.

Find the result of acting with ;- 63 on each of the basis vectors above. Hint:
This operator is the sum of three terms (for x, y and z). In each term, the &, operator
acts on the first spin and the corresponding -, operator acts on the second spin. Then
you can write the result as a linear combination of the original basis vectors. Write
the matrix for ' in this basis.



2. When we have new operators, we should always worry about their commutators. We
found that the different components of § don’t commute, so they can’t all be diagonal-
ized at once. We could diagonalize S, and 52 at the same time since they do commute.
Now, all of the S; operators commute with all of the S, operators, since they act on
different spins. So we can diagonalize Slz, S'QZ, Sl, and 52 at once. But there’s an-
other choice that’s also convenient. Define the total spm J = Sl + Sz Show that J2
commutes with J,, $?, and S%. Hint: Use (Sy + 83)? = S + 53 +25; - S,.

3. Find the simultaneous eigenstates of J? and J. (that is the set of four vectors
that are eigenstates of both operators). Find the corresponding eigenvalues
of each operator. Hint: To help you check your answer, I will try to give you some
physical insight into what is going on. What we are doing is adding the angular mo-
mentum of the two spins. In quantum mechanics, we don’t have an operator for the
magnitude of the angular momentum. The best we can do is to look at 5’2, which is the
magnitude squared. In the previous problem set you should have found its eigenvalue
was hQ%. In general, any angular momentum operator J? has eigenvalues h%j(j + 1),
where j is an integer or a half-integer. We can think of ij as the magnitude of the
angular momentum (which is quantized). We would have expected this would yield an
eigenvalue /%52, but there is another A%j — roughly, to leave “room for uncertainty.”

The two-state system we have been considering is then just the case of j = %

If we add two angular momenta j; and j5, we have to ask whether they add or cancel out
(since maybe the angular momenta are in the same direction, and maybe they are in the
opposite direction, and maybe they are somewhere in between). The answer is that we
get all the (quantized) possibilities: the magnitude of the resulting angular momentum
can range from [j; — jo| to (j1 + j2) , and all the integer steps in between. In the case
we are looking at, we are adding angular momenta with j; = % and jo = % We're not
going to derive the general result (which would require us to develop the whole theory
of angular momentum) at this point, but the answers you get for this problem should
be consistent with the result you would get from this argument.

4. Continuing with the two—spin problem, define the raising and lowering operators
JE=J, +ilJ, (4)
Denote the four states you found in the previous problem as |j j.), where f 25(j+1) is
the eigenvalue of J J2 and hj, is the eigenvalue of J.. Find the action of both of these

operators on each of these four states. What is being “raised” and “lowered” by
these operators?

5. Consider two spins subject to the Hamiltonian
H=—-aS -5, (5)
At time t = 0 we measure the z component of angular momentum of each spin separately
and find +Z for the first spin and —Z for the second spin. Find the expectation

values of S, Saz, S1y, Says Si2, and Sy, as functions of time.



