An Erdős-Stone Type Conjecture for Graphic Sequences

John R. Schmitt^{1,2}

Department of Mathematics Middlebury College Middlebury, VT 05753, USA

Michael Ferrara³

Department of Mathematical Sciences University of Colorado at Denver and Health Sciences Center Denver, CO 80217, USA

Abstract

We consider a variation of the classical Turán-type extremal problem as introduced by Erdős, Jacobson and Lehel in [4]. Let π be an *n*-element graphic sequence and let H be a graph. We wish to determine the smallest even integer m such that any *n*-term graphic sequence π having degree sum at least m has some realization containing H as a subgraph. Denote this value m by $\sigma(H, n)$. For an arbitrarily chosen H, we construct a graphic sequence $\pi(H, n)$ whose degree sum plus two is at least $\sigma(H, n)$. Furthermore, we conjecture that equality holds in general, as this is the case for all choices of H where $\sigma(H, n)$ is currently known.

Keywords: Degree sequence, Potentially graphic sequence

1 Introduction

We consider only simple undirected graphs. We will denote the complete graph on t vertices by K_t , and the join of two graphs, G and H, by G + H. Further, we will write $H \subset G$ if H is a subgraph of G and H < G if H is an induced subgraph of G.

A sequence of nonnegative non-increasing integers $\pi = (d_1, d_2, \ldots, d_n)$ is said to be *graphic* if there exists a graph G of order n having degree sequence π . The graph G is said to be a *realization* of π . Writing $\pi = (d_1^{\mu_1}, \ldots, d_t^{\mu_t})$ will indicate that d_i repeats μ_i times.

For a given graph H, a sequence π is said to be *forcibly* H-graphic if every realization of π contains H as a subgraph. Thus Turán's classical question [22] may be re-phrased as follows: determine the least even integer M so that every n-term graphic sequence with the sum of the terms exceeding M is forcibly K_t -graphic. The same question for an arbitrary graph H was considered and solved by Erdős-Stone [6] (see also Erdős and Simonovits [5]). Sometimes referred to as the fundamental theorem of extremal graph theory, their result states that this value is determined by the chromatic number of H and n.

For a given graph H, a sequence π is said to be potentially H-graphic if there exists some realization of π which contains H as a subgraph. In the early 1990's, Erdős, Jacobson and Lehel [4] posed the following problem: determine the least even integer m so that every n-term graphic sequence with the sum of the terms exceeding m is potentially K_t -graphic. They proposed that this value, denoted $\sigma(K_t, n)$, is (t-2)(2n-t+1)+2 as they considered the degree sequence $((n-1)^{t-2}, (t-2)^{n-t+2})$ as the extremal sequence. (The unique realization of this sequence is $K_{t-2} + \overline{K}_{n-t+2}$.) This value was shown to be correct for the cases t = 3, 4 and 5 (see respectively [4], [11] and [16], and [17]), and Li, Luo and Song [18] proved the conjecture true via linear algebraic techniques for $t \ge 6$ and $n \ge {t \choose 2} + 3$. A purely graph-theoretic proof was given in [8] and also as a corollary to the main result in [3].

The aim of this note is, for an arbitrarily chosen graph H, to give a lower bound for $\sigma(H, n)$, that is to determine the least positive even integer so that every *n*-term graphic sequence exceeding this $\sigma(H, n)$ is potentially *H*-graphic.

 $^{^1\,}$ The first author wishes to thank the Organizing Committee of the 6th Czech-Slovak International Symposium, Prague 2006, for their generous support.

² Email: jschmitt@middlebury.edu

³ Email: mferrara@math.cudenver.edu

2 Main Result

We assume that H has no isolated vertices and that n is sufficiently large with respect to the number of vertices of H, |V(H)|. Let $\alpha := \alpha(H)$ denote the independence number of H. We define the quantities

$$u := u(H) = |V(H)| - \alpha(H) - 1,$$

and

$$d := d(H) = \min\{\Delta(F) : F < H, |V(F)| = \alpha(H) + 1\}.$$

Let $v_i(H)$ denote the number of vertices of degree *i* in *H*. For all $i, d \leq i \leq \alpha - 1$ we define the quantity m_i to be the minimum number of vertices of degree *i* over all induced subgraphs *F* of *H* with $|V(F)| = \alpha + 1$. The quantities $n_i, d \leq i \leq \alpha - 1$ are defined recursively such that $n_d = m_d - 1$ and $n_i = \min\{m_i - 1, n_{i-1}\}$. Finally, we define $\delta_{\alpha-1} = n_{\alpha-1}$ and for $d \leq i \leq \alpha - 2$ we define $\delta_i = n_i - n_{i+1}$.

We now consider the following sequence:

$$\pi(H,n) = ((n-1)^{u}, (u+\alpha-1)^{\delta_{\alpha-1}}, (u+\alpha-2)^{\delta_{\alpha-2}}, \dots \\ \dots (u+d)^{\delta_{d}}, (u+d-1)^{n-u-\Sigma\delta_{i}}).$$

If this sequence is not graphic, then we will reduce the smallest term which is strictly greater than u(H) in the sequence by one and redefine $\pi(H, n)$ to be this graphic sequence instead. Let $\sigma(\pi(H, n))$ denote the sum of the terms of $\pi(H, n)$.

Theorem 2.1 ([10]) Given a graph H and n sufficiently large then,

(1)
$$\sigma(H,n) \ge \max\{\sigma(\pi(H^*,n)) + 2 \mid H^* \subseteq H\}.$$

It has been shown that equality holds in Theorem 2.1 for the following graphs: complete graphs [4], [11], [16], [17], [18], complete bipartite graphs [2],[11], [19], complete balanced multipartite graphs [8], [1], matchings [11], cycles [13], the friendship graph $(K_1 + kK_2)$ [9],[12], split graphs [3], a disjoint union of cliques [7] and a complete graph with an edge deleted [14], [15]. At this time we know of no subgraph for which equality does not hold and thus conjecture that the inequality sign in Equation 1 may be replaced by an equality sign.

References

- [1] Chen, Guantao, M. Ferrara, R. Gould, and J. R. Schmitt, *Graphic sequences* with a realization containing a complete multipartite subgraph, submitted.
- [2] Chen, G., J. Li, and J. Yin, A variation of a classical Turán-type extremal problem, European Journal of Combinatorics 25 (2004) 989-1002.
- [3] Chen, G. and J. Yin, On Potentially K_{r_1,r_2,\ldots,r_m} -graphic sequences, submitted.
- [4] Erdős, P., M. Jacobson, and J. Lehel, Graphs realizing the same degree sequence and their respective clique numbers, Graph Theory, Combinatorics and Applications, 1, 1991, ed. Alavi, Chartrand, Oellerman and Schwenk, 439-449.
- [5] Erdős, P., and M. Simonovits, A limit theorem in graph theory, Stud. Sci. Math. Hungar. (1966), 51-57.
- [6] Erdős, P., and A.H. Stone, On the structure of linear graphs, Bull. Amer. Math. Soc. 52 (1946), 1087-1091.
- [7] Ferrara, M., *Graphic sequences with a realization containing a union of cliques*, submitted.
- [8] Ferrara, M., R. Gould, and J. R. Schmitt, *Potentially* K_s^t -graphic degree sequences, submitted to Elec. J. Comb.
- [9] Ferrara, M., R. Gould, and J. R. Schmitt, *Graphic sequences with a realization containing a friendship graph*, to appear in Ars Combinatoria.
- [10] Ferrara, M. and J. R. Schmitt, A sharp lower bound for potentially H-graphic sequences, submitted to J. Graph Theory.
- [11] R. Gould, M. Jacobson, and J. Lehel, *Potentially G-graphic degree sequences*, Combinatorics, Graph Theory, and Algorithms (eds. Alavi, Lick and Schwenk),
 1, New York: Wiley & Sons, Inc., 1999, 387-400.
- [12] Lai, C., An extremal problem on potentially $K_m C_4$ -graphic sequences, submitted.
- [13] Lai, C., The smallest degree sum that yields potentially C_k -graphical sequences, J. Combin. Math. Combin. Comput. **49** (2004), 57–64.
- [14] Lai, C., A note on potentially $K_4 e$ graphical sequences, Australas. J. Combin. 24 (2001), 123-127.
- [15] Li, J., R. Mao, and J. Yin, An extremal problem on the potentially $K_{r+1} e$ graphic sequences, Ars Combinatoria 74 (2005), 151-159.

- [16] Li, J. and Z. Song, An extremal problem on the potentially P_k-graphic sequences, The International Symposium on Combinatorics and Applications, June 28-30, 1996 (W.Y.C. Chen et. al., eds.) Tanjin, Nankai University 1996, 269-276.
- [17] Li, J. and Z. Song, The smallest degree sum that yields potentially P_k -graphical sequences, J. Graph Theory **29** (1998), no.2, 63-72.
- [18] Li, J., R. Luo and Z. Song, The Erdős-Jacobson-Lehel conjecture on potentially P_k-graphic sequences is true, Science in China, Ser. A, 41 (1998), (5), 510-520.
- [19] Li, J. and J. Yin, The smallest degree sum that yields potentially $K_{r,r}$ -graphic sequences, Science in China, Ser. A, **45** (June 2002), (6), 694-705.
- [20] Li, J. and J. Yin, An extremal problem on potentially $K_{r,s}$ -graphic sequences, Discrete Math., **260** (2003), 295-305.
- [21] Li, J. and J. Yin, Two sufficient conditions for a graphic sequence to have a realization with prescribed clique size, Discrete Math. **301** (2005) 2-3, 218-227.
- [22] Turán, P., Extremalaufgabe aus der Graphentheorie, Mat. Fiz Lapook 48 (1941), 436-452.