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Abstract. This paper compares two methodologies that have been used to understand the evolution
of bargaining conventions. The first is the analytical approach that employs a standard learning
dynamic and computes equilibria numerically. The second approach simulates an environment with
a finite population of interacting agents. We compare these two approaches within the context of
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1. Introduction

As a result of advances in computer technology, analytical models which were
previously discarded because closed form solutions could not be calculated, are
now being solved computationally by simulation. This achievement has spawned
new interest in complicating simple models to improve their descriptive ability.
However, researchers make choices when they develop computational tools to
compute equilibria. One important subject, that has been given little attention, has
to do with the extent to which various numerical methods provide similar results
when controlling for a given model’s basic institutional environment. This paper
explores this question by comparing three evolutionary bargaining models using
two forms of simulation. The first method iterates the discrete analogue of the
differential equations used to model the evolution of different bargaining strategies.
The second method is the more decentralized agent-based method which develops
a bargaining environment and then populates it with agents who adopt strategies
according to a simple learning rule.
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Another related issue arises when only one of the two methods mentioned
above is an effective method to pursue. More particularly, it is often the case that
interesting questions cannot be answered adequately by simply writing down a
system of dynamical equations and therefore the method of numerical iteration
cannot be helpful. Alternatively, the underlying dynamics may be so complicated
that simulating them in difference form may be either impractical or impossible
(e.g. stochastic dynamical systems)1. In these situations, it would be interesting to
know that the agent-based approach can be shown to generate the same behavior
as the numerical iteration approach in a simpler environment.

Lastly, there is one other issue that is of particular importance for the evolution-
ary models to be discussed in more detail below. The replicator dynamic used in
many evolutionary models is based on the assumption that populations are infinite.
Therefore, by employing the law of large numbers, expected payoffs can be treated
as actual payoffs in fitness calculations. However, it is obvious that the agent-based
approach must be developed with finitely many agents. If the agent-based approach
is an appropriate way to numericaly calculate equilibria in evolutionary models,
then it must be shown that finite populations can approximate the behavior of an
infinite population. The comparison of the agent-based approach and the numerical
iteration approach using a common theoretical model as a basis allows us to explore
all three questions.

The three models, that have been simulated, all have been developed in greater
depth elsewhere to analyze the evolution of the equal split as a bargaining conven-
tion and use a common structure, the Nash demand game. Because all three models
share the structure of the same underlying normal form game and are developed to
answer a common question, they provide a sound basis for making comparisons
between the two simulation techniques. Additionally, using three variants of the
underlying model is useful, because it allows us to stress-test each method by
changing the model slightly.

Before we begin the analysis we will say a few words about the bargaining
models and about the reasons for evolutionary models in particular. Although many
variants of the Stahl-Rubinstein non-cooperative theory of bargaining (Stahl, 1972;
Rubinstein, 1982) exploit externally given differences in negotiator preferences
or use stylized descriptions of asymmetries in the bargaining environment to de-
rive equilibria, the models developed below exclude these factors and focus on
the tradeoff between coordination and payoff maximization. The most appropri-
ate game structure on which to base models of this sort is Nash’s demand game
(Nash, 1953). In this game two agents make demands for a share of some re-
source. If the sum of their demands is less than or equal to the resource, then
they are both satisfied, otherwise they both receive nothing. This formulation of
the bargaining problem is interesting because, in absence of asymmetries between
players, unequal outcomes can be sustained by the fact that players are concerned
about coordinating to take full advantage of the resource. As a result, although the
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equal split is a bargaining convention that can arise in this game, it is not the only
convention that can emerge2.

Evolutionary models are particularly interesting for the comparison we wish
to make because they lend themselves to being simulated in more than one way.
Because non-linear dynamical equations are regularly used to describe the time
paths of a population distribution, these models often must be solved numerically
by iterating discrete time analogues or by developing agents who interact accord-
ing to the underlying structure imposed by the dynamic employed. Additionally,
the evolutionary approach is often adopted because such models do not rely on
informational or rationality assumptions made in standard game-theoretic models.
Agents in standard models know the preferences of their bargaining counterpart
and understand that their counterparts will act in accordance with these prefer-
ences. By comparison, agents in evolutionary models need not know how their
counterpart orders outcomes or how they will respond to different allocations –
they are simply born to blindly play a strategy. Stategies, and the agents who play
them, flourish in an environment if the strategy does better, on average, than the
other strategies present. The fact that agents in evolutionary models know nothing
about their bargaining partner, remember nothing about previous interactions (i.e.
they have zero-intelligence), and blindly make demands (i.e. they are relatively
unsophisticated) makes them easy to simulate in both the ways we are interested
in.

Although the models of Skyrms (1994), Ellingsen (1997), and the one we de-
velop below all use the Nash demand game as a structure to base an evolutionary
theory of the equal split on, each is unique in the institutional assumptions that
drive the result. Skyrms (1994) models assortative interactions between agents.
When agents are more likely than chance would predict to interact with a like
agent, interactions between agents who demand less than half the surplus always
result in inefficient agreements. Interactions between agents who demand half are
both efficient and avoid conflict, and interactions between agents demanding more
than half the pie always result in impasse.

Hence, demanding half the pie does better, on average, than other strategies.
Ellingsen (1997) relies on a static notion of stability developed by Maynard Smith
and Price (1973) to describe bargaining conventions that arise in a slightly more so-
phisticated environment. In this model agents can be obstinate and make demands
as in the original specification of the game, or they can be responsive. Responsive
agents are sophisticated in that they avoid conflict by claiming whatever is left over
after obstinate agents have satisfied their demands. Finally, as a third extension of
the standard Nash demand game Section 2.2 formulates a model in which a small
fraction of agents experiment by randomly changing their demands. In this case,
the only stable convention, as the amount of experimentation becomes negligible,
is the equal split.

Section 2 develops a generic evolutionary model of the Nash demand game to
provide the basis for the three models and then presents summaries of the three
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models just mentioned, starting with the model of experimentation. For the sake
of expositional continuity and to control for the underlying structure of bargain-
ing, each of the three models will be developed as an extension of the generic
model. Section 3 reports the details of how the simulations were programmed and
conducted. Section 4 concludes by discussing how well the agent-based approach
approximates the behavior found using numerical techniques.

2. Three Models of the Equal Split

In this section we outline three evolutionary models of bargaining conventions.
We start by developing a genetic bargaining environment and by introducing the
notions of stability that we will use to analyze equilibria in three alternations of
the generic model. In the first case, the model is altered by allowing agents to
experiment with different strategies. In the second case, interactions become as-
sortative, in that like types meet more often than would be expected by random
chance. Finally, in the third model the strategy set is altered to allow for more
sophisticated behavior. Here agents are sophisticated to the extent that they defer
to their counterpart’s demand and therefore always avoid conflict.

2.1. THE GENERIC MODEL

The bargaining environment is characterized by an infinite population of negotia-
tors who make demands for a share of some renewable resource that has a value
of 1 unit. Further, partners in this interaction are determined randomly and their
demands are taken from a finite set of all the possible fractional divisions of the
unit resource. This set will be denoted as D. Interactions are structured as follows.
Agents simultaneously make demands for a share of the resource. For example, say
one agent demands x and the other demands y where x,y ∈ D. If both demands sum
to an amount that is less than or equal to 1, then each agent gets their demanded
share. Otherwise, both get nothing. If the game is played only using pure strategies,
the number of Nash equilibria will be determined by the number of elements in D,
where each pair of equilibrium demands sums to 1.

For the Nash demand game to be interesting, we only need three pure strategies,
one where agents demand something less than one-half, one where agents demand
exactly one-half, and a third where agents demand one minus the lower demand.
That is, the game remains interesting where D = {1/3, 1/2, 2/3} because it retains
the important balance between payoff maximization and coordination. We will call
this three-pure strategy game the finite Nash demand game. The normal form of
this game is illustrated as Figure 1 wherein one can see the three pure strategy
Nash equilibria that lie along the diagonal from the southwest corner of the matrix
to the northeast corner3.

Given this bargaining structure we can now use the standard tools of evolution-
ary game theory to analyze equilibria. The fitness of a demand is determined by
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Figure 1. The finite Nash demand game.

the expected benefit it confers on an agent who randomly interacts with another
agent. For example, the fitness of demanding 1/3 is determined both by the payoff
received from meeting each of the three types in the population, as well as by
the the likelihood of meeting each type. More formally, we can define the finite
Nash demand game as D = 〈D,π(x, y)〉, where D is the set of strategies defined
above and π(x, y) is the payoff of an agent demanding x who meets another agent
demanding y for x,y ∈ D. Further, let a be a vector of probabilities, ay being the
probability of demanding y. Then the fitness, F(·) of a demand is equal the sum of
the payoffs to meeting each agent type weighted by the probability of meeting said
type or.

F(x) =
∑
y∈D

ayπ(x, y) where
∑
y∈D

ay = 1 . (1)

Nash equilibria of D are found by calculating probability distributions that equate
the payoff to playing each of the pure strategies that are used with positive prob-
ability. Using this method, all agents demanding 1/2 and agents demanding 1/3
with probability one-half and demanding 2/3 with probability one-half are Nash
equilibria of the current game. Call the first equilibrium the symmetric Nash equi-
librium and the second the asymmetric Nash equilibrium. There is also an interior
Nash equilibrium where all three demands are used with positive probability. Here
the probability distribution (a1/3, a1/2) that equalizes the payoff to demanding 1/3,
the payoff to demanding 1/2, and the payoff to demanding 2/3 is (1/2, 1/6). The
existence of three equilibria makes it difficult to predict where the population
will actually end up. To deal with this problem we now introduce two notions
of stability that will be used to narrow the set of equilibria.

Maynard Smith (1982) refines the concept of a Nash equilibrium for a popu-
lation of agents who replicate themselves over the course of many generations in
frequencies that depend on the outcome of pair-wise interactions. In this formu-
lation the notion of fitness determines how many offspring an agent passes to the
next generation. A strategy is said to be evolutionarily stable (ESS) if, when most
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of the population uses the strategy each agent using the strategy has higher fitness
than any agent using another strategy4.

PROPOSITION 1. No fully supported strategy (i.e., where every pure strategy is
played with positive probability) can be an ESS of the finite Nash demand game
D = 〈 D, π (x, y) 〉.
Proof. See Appendix.

The implication of Proposition 1 is that the internal Nash equilibrium is not an ESS
of D . However, calculating the payoffs to playing the asymmetric Nash and the
symmetric Nash against each other, against the internal equilibrium strategy, and
against all the pure strategies shows that these two Nash equilibria are supported
as ESSs of D . The stability of these two equilibria can be determined in another
more general way – replicator dynamics.

Replicator dynamics are often preferred because they do not require agents to
calculate mixed strategies. That is, now assume that each agent is hard-wired to
make a specific demand. In particular, a fraction a1/3 of the agents demands 1/3
of the resource no matter who they are paired with. Another fraction a1/2 always
demand 1/2 and the remaining 1 − a1/3 − a1/2 of the agents demand 2/3. As stated
in Section 1, the population is assumed to be large so that using the law of large
numbers we can equate expected outcomes and actual outcomes. Now following
Appendix D of Maynard Smith (1982) define average fitness, F̄ as the mean fitness
of the population such that

F̄ =
∑
y∈D

ayF (y) . (2)

Because average fitness is a measure of the productivity of the population as a
whole, the frequency of agent type x in the next generation is determined by how
productive demanding x is in relationship to the average demand. Assuming that
the differences between generations are not too large we can express the time paths
of the population of agents as

dax

dt
≡ ȧx = ax(F (x) − F̄ ) . (3)

Equation (3) is the basic replicator dynamic and can be interpreted to mean that
the rate of growth of x demanders in the population is proportional to the fitness
of demanding x relative to the average fitness of the current population, given the
distribution of types, a.

For the three-strategy Nash demand game the growth rates of demanding 1/3,
da1/3/dt and demanding 1/2, da1/2/dt are

da1/3

dt
≡ ȧ1/3 = a1/3[1/3 − (a1/3 − a1/3a1/2/6 − 2a2

1/3/3 + a2
1/2/2)] (4)
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and

da1/2

dt
≡ ȧ1/2 =

a1/2[(a1/3 + a1/2)/2 − (a1/3 − a1/3a1/2/6 − 2a2
1/3/3 + a2

1/2/2)] . (5)

A stationary state of this dynamical system occurs when both of the rates of growth
approach zero and therefore an evolutionary equilibrium for the finite Nash demand
game arises where ȧ1/3 = ȧ1/2 = 0.

Recall that the criteria for an ESS in the finite Nash demand game eliminated
any fully supported mixed strategy. Using the dynamic system that we have just
developed, we can prove that the internal Nash equilibrium is not a stable fixed
point of the replicator dynamics either5.

PROPOSITION 2. The asymmetric and the symmetric Nash equilibria are asymp-
totically stable evolutionary equilibria of the replicator dynamics described by (4)
and (5).
Proof. See Appendix.

In this section we have developed an environment in which strategies compete
for a finite resource and replicate themselves according to a simple dynamical
learning rule – look around and see how well you are doing with respect to the
average. Additionally, we have seen that within this structure two stable equilibria
(conventions) can evolve and another non-stable equilibrium is not sustainable.
As such, this provides a good foundation to explore the performance of the two
simulation methods. However, to add additional pitfalls for the simulations, we
will first look at three different refinements that have been developed to single out
the equal split as the only stable convention. We begin by exploring a stronger
stability requirement.

2.2. SYSTEMICALLY STABLE BARGAINING CONVENTIONS

As a first adjustment to the basic model, we consider a stronger stability condition
related to the notion of stochastic stability develop originally in Young (1993). The
basic premise is as follows. The requirement used to test the stability of equilibria
in the genetic model (using either the static notion of ESS or the dynamic notion
of the asymptotic stability of a fixed point) boils down to a test of whether an
equilibrium is what we call invasion proof. An invasion can be thought of as a
small perturbation away from an equilibrium population distribution where a small
number of agents adopt some other strategy. An equilibrium is said to be stable
if the population distribution does not continue to diverge from the equilibrium
after invasion (i.e. the invaders do not do better than the general population, on
average). Further an equilibrium is said to be asymptotically stable if the invasion
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can be repelled in the sense that invaders do worse on average than the general
population and therefore the system returns to the original equilibrium.

With these definitions in mind, consider an alteration of the generic scenario.
Rather than a small one-time invasion, what if perturbations occur randomly and
repeatedly so that the system does not necessarilly recover before another pertur-
bation? In this case perturbations are systemic. To visualize the situation, suppose
that a small fraction of the population experiments with different strategies by
randomly choosing demands or by making mistakes in each period. In this case, a
population distribution is said to be systemically stable if the system is certain to
stay in the neighborhood of the equilibrium population distribution for small rates
of experimentation.

We can now check for systemic stability in the finite Nash demand game by
altering Equations (4) and (5) in the following way. Assume, for whatever reason
(experimentation or mistake), a fraction d of the population disregard the strategy
they are born with and randomly choose among the strategies in D. Further, the
remaining (1 − d) of the agents make demands as before. In this case we have

ȧ1/3 = (1 − d)a1/3[1/3 − (a1/3 − a1/3a1/2/6−
2a2

1/3/3 + a2
1/2/2)] + d(1/3 − a1/3) (6)

and

ȧ1/2 = (1 − d)a1/2[(a1/3 + a1/2)/2 − (a1/3 − a1/3a1/2/6−
2a2

1/3/3 + a2
1/2/2)] + d(1/3 − a1/2) . (7)

The last term following the plus sign in each equation indicators that a fraction, d
of the population choose a strategy randomly. To see this let d → 1 and find the
fixed points of the system. It is easy to see that there is an asymptotically stable
equilibrium, where each strategy is played by one-third of the population – exactly
what would be expected from a population making demands randomly.

PROPOSITION 3. Only the equal slit is asymptotically stable for levels of exper-
imentation greater than 0.013 6.
Proof. See Appendix.

In altering the generic bargaining model in a very reasonable way be allowing for
systemic perturbations to equilibrium, we see that only the equal split is robust to
the inertia the system is subjected to when agents experiment or make mistakes. We
shall see whether this refinement poses a challenge for the agent-based simulation
in Section 4.
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2.3. ASSORTATIVE INTERACTIONS

Now we ask what happens to the set of equilibrium population distributions when
interactions are somewhat assortative7. Interactions are assortative in the current
model because there is some positive correlation between pairing and type. In par-
ticular, let there be gravity between like types so that agents demanding x are more
likely to meet other x demanders than would be expected by random chance. For-
mally, let z be the probability that like types meet. This changes the dynamic, (3).
Remember that the payoff to demanding x against another x demander is π(x, x)

which means that (1 − z) of the x demanders will have fitness F(x) calculated as
in (1) and a fraction z of the x demanders will have fitness π(x, x). Combining
these facts and again assuming the population does not change too much from
generation, we have

dax

dt
≡ ȧx = ax[(1 − z)F (x) − zπ(x, x) − F̄ ] . (8)

Notice that as the amount of assortation becomes large, the growth rate of strategies
depends only on the difference between π(x, x) and the average fitness of the
population. Clearly, this difference is maximized by agents using the equal split
rule. However, we are interested in a different result. That is, what is the critical
value of z above which only one-half demanders survive?

Changing (4) and (5) in accordance with (8) we have

ȧ1/3 = a1/3[1/3 − (a1/3 − a1/3a1/2/6 − 2a2
1/3/3 + a2

1/2/2)] (9)

and

ȧ1/2 = a1/2[z(1 − a1/3 − a1/2)/2 + (a1/3 + a1/2q)2 − (a1/3 − a1/3a1/2/

6 − 2a2
1/3/3 + a2

1/2/2)] . (10)

Notice that there is no difference between (9) and (4) because agents demanding
1/3 get one-third of the surplus no matter whom they interact with.

PROPOSITION 4. Only the equal split is asymptotically stable under assortative
interactions when z > 1/3.
Proof. See Appendix.

Proposition 4 demonstrates that when it is sufficiently probable that like types
interact, modest demands lead to inefficient bargaining and greedy demands too
often end in conflict. The end result is a stable (invasion-proof) population of agents
demanding half the surplus.
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Figure 2. The finite Nash demand game with strategy set D′.

2.4. SOPHISTICATED AGENTS

As a third variation from the genetic model, consider a larger strategy set that
includes the demands of more sophisticated agents8. Here sophistication means
that some agents do not obstinately make demands, rather they accept the demands
of their counterpart and react by claiming any residual. Therefore, these responsive
agents always avoid conflict. To stay as close as possible to the original version of
this model we will also admit two more strategies, the ultra modest strategy of de-
manding nothing and the greedy strategy of demanding all the surplus. In addition,
we use the static notions of stability (ESS and NSS) to analyze the evolution of this
expanded group of negotiators.

Formally, let D′ be the expanded set of demands such that D′ = {0, 1/2, 1/2,
2/3, 1, r} where r = 1 − x for all x �= r and x ∈ D′. We also need to re-specify
the payoff function so that it matches that of Ellingsen (1997). In this model we
consider only fully efficient negotiations such that

π(x, y) =
{

x
x+y

, if x + y ≤ 1
0 , otherwise .

(11)

Lastly, define π(r, r) = 1/2 so that when two responsive agents meet, they share
the surplus equally. Figure 2 illustrates the normal form game that represents this
model. Using the concept of iterative elimination of weakly dominated strategies,
we find a unique solution where all agents are greedy (i.e. demand the whole
surplus). However, it is not necessarily the case that evolution eliminates weakly
dominated strategies (Samuelson and Zhang, 1992; Samuelson, 1997; Mailath,
1998). We shall return to the question of dominance when the simulation results
are discussed in Section 4. For now, we are interested in whether the equal split is
viable.
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PROPOSITION 5. A population distribution, a is neutrally stable if and only if
a1/2 > 1/2 and ar = 1 − a1/2.
Proof. See Appendix.

In this model agents need to be wary of greedy strategies that are viable in pop-
ulations that contain responsive agents because responsive agents seek to avoid
conflict at all cost. As the simulations will show, responsive agents are both a
blessing and a curse. They add to the support of the equal split which is good
for the simple reason that the level of conflict (efficiency) in such populations is
at a minimum (maximum). However, they also contribute to the fragility of the
equal plit because they free-ride on obstinate fair agents who punish greedys. This
summarizes the last pitfall for which the simulations will need to account.

3. Numerical Iteration and Agent-Based Simulations

As mentioned above, we choose to simulate the finite version of the Nash demand
game because it is relatively easy to do so both by iterating the discrete analogues
of the replicator dynamics derived above and by simulating the bargaining envi-
ronment with agents9. In this section we will describe in detail the implementation
of these two forms of simulation.

3.1. NUMERICAL SOLUTIONS

The numerical simulations simply iterate the replicator dynamic (in difference
form) from randomly drawn initial conditions10. By running enough sessions, one
can sweep the simplex created by the three strategies relatively efficiently. A sam-
ple of the code is instructive. What follows is the heart of the code for the numerical
simulation of the systemic model of Section 2.2 (here p = a1/3 and q = a1/2)
(Scheme 1).

Scheme 1.
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Figure 3. Creating and array of negotiators.

As can be seen from this example, the researcher inputs a value of d, the fraction
of agents who experiment in each period, the program randomly picks a seed (not
shown) and then the simulation loops until the total deviation in the population
distribution from one generation to the next is less than 0.000001. The lack of
movement from one generation to the next implies a stable population distrib-
ution. This basic code altered for the unique characteristics of each scenario is
used to simulate each of the three models from a variety of initial conditions. This
procedure allows one to construct phase diagrams for each model.

3.2. AGENT-BASED MODELS

The structure of the agent-based simulations is somewhat complicated and there-
fore warrants a more detailed discussion. At the beginning of each simulation an
array of 1000 agents if created that reflects different starting distributions of the
demander types (e.g the number of 1/2 demanders is a1/2 × 1000). This array is
then shuffled to randomize the order of the agents. Figure 3 illustrates the process
of creating an array and shuffling it. Initially the array is populated by 1000 × a1/3

one-third demanding agents followed by 1000 × a1/2 half demanding agents who,
in turn, are followed by 1000 × a2/3 two-thirds demanders. This is shown at the
top of Figure 3. The shuffling process proceeds by picking two agents randomly to
change places in the array. This happens 1000 times so that by the end of shuffling
the strategies are randomly distributed along the array.

After shuffling is completed, the agents bargain. Each even numbered agent
plays the Nash demand game with their neighbor to the left and the payoffs are
recorded. The distribution of types in the agent array for the next generation is
determined by the success of each strategy as a whole in the generation before.
More specifically, three sums are calculated, one for each demander type, which
record the total earnings of each strategy. Agents in the next period are distributed
according to the share of total earnings (the sum of all agents’ payoffs) each strat-
egy is responsible for. This simulates a process in which agents look around after
one period at everyone’s payoff and then adopt a strategy in the next period with
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Figure 4. Creating and array of shuffled, assorted negotiators.

probability equal to the strategy’s relative success (i.e. the replicator dynamic). This
routine was repeated for 100 generations.

For the systemic model of Section 2.2 the process was altered by allowing for
mutations. After the initial array was created, but before it was shuffled, a fraction,
d of the agents were randomly chosen from the array. These agents were then ‘re-
programmed’ to play a strategy randomly and therefore with probability one-third
they actually played the original strategy that they were born with. The remainder
of the procedure was unchanged.

The process of assortation required that we alter the process of creating an array
of negotiators. Although it is not discussed in the assortative model presented above
(nor in the original model of Skyrms (1994), another assumption needed to be made
in the simulations. As the population share of an unfit demand type approaches
zero, two things can happen. One, to maintain the level of assortation, unfit agents
can withdraw from the population and begin to only interact with each other. Or
two, as the unfit become less prevalent in the population, the probability increases
that they will be forced into the general population and therefore will be more
likely to meet other types. We will make the second assumption. This point is
better understood by illustration.

Figure 4 presents the method of creating an assorted array of negotiators. For
the sake of making the simulation easier to program we reverse the notation of
Section 2.3. Here, z is the fraction of each demand type that are paired randomly
and (1 − z) is the fraction that meet only a like demander. Now, when creating an
array of negotiators we set up home turf where only like demanders interact. For
example, where n is the population size, the left most part of the array shown
in Figure 4 is the home turf of the 1/3 demanders. The size of this enclave is
determined by z and by the population share of 1/3 demanders. Those agents on
home turf cannot be shuffled while the remainder of the population are moved
randomly to non-home territory as depicted in Figure 4. As the population share of
1/3 demanders falls, the border of the home turf moves to the left. In the limit, as
a1/3 approaches zero, the home turf vanishes and 1/2 demanders are just as likely
to be shuffled as any other agent outside of their turf.
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Lastly, two changes were needed for the agent-based simulations of the so-
phisticated model (Section 2.4). First, because the sophisticated model utilizes a
richer strategy space, the number of strategies was increased from three so six. In
particular the strategy set D was expanded so that D′ = {0, 1/3, 1/2, 2/3, 1, r} was
used instead. Also, the payoff structure (Equation (11)) is different and therefore
the revised version was also adopted for the simulations of this model.

4. Numerical Analysis vs. Agent-Based Simulations

In this section we discuss the results of the two simulation techniques. The three
models we developed in Section 2 enable us to discuss how three different varia-
tions on the basic model are treated differently (or not) by the two computational
methods we employ. More specifically, the systemic model allows us to see what
happens when we introduce gravity towards the center of the simplex. The as-
sortative rule allows us to compare the techniques when we change the strategy
pairing rule, and lastly, the sophisticated model introduces the potential pitfalls of
an expanded strategy space and weakly-dominated strategies.

We compare the two techniques based on two very general criteria – time to
convergence and equilibrium selection. The first is measured in generations to
population fixation. The second criteria is a comparison of how well the agent-
based simulation picks the same equilibrium from a given starting state as the
discrete model which we treat as picking the ‘true’ equilibrium. To quantify the
potential differences we use the non-parametric Kolmogorov-Smirnov (ks) statis-
tic, which tests whether the data points in the time paths are commonly distributed.
Also, when we discus the results of the simulations we shall speak in terms of the
evolution of the ‘demand half’ strategy in particular because it is focus of our three
models. We also do this so as to not clutter the presentation.

4.1. CONVERGENCE IN THE GENERIC AND SYSTEMIC MODELS

Figure 5 plots the evolution of the equal split in the generic model (d = 0) from
Section 2.1. As in all the graphs comparing the agent-based (AB) simulations to
the numerical simulations, the AB time paths are denoted by dotted lines and the
numerical paths appear as solid lines that are offset by one generation. As can be
seen from Figure 5, the AB technique picks the same equilibrium as the numerical
simulation in all cases and the AB simulations all seem to arrive at fixation in ap-
proximately the same number of generations as their numerical counterparts. This
is in fact statistically true (with ks = 0.0836, p = 0.99 for the largest difference
between the two initial state (a1/3, a1/2, a2/3) = (0.8, 0.1, 0.1)) with one exception
which is obvious from Figure 5. From the starting state (0.5, 0.267, 0.333) the AB
model arrives at the equilibrium in 27 generations while the numerical simulation
takes more than 50 generations. This difference is highly significant (ks = 0.69,
p = 0). Recall that this starting state is the unstable internal Nash equilibria we
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Figure 5. Comparison of agent-based and numerical simulations – generic model.

spoke of in Section 2.1, which means that the contours around the internal saddle
point are steeper in the AB simulation than in the numerical. However, in general
according to our two criteria, the two techniques are more or less indistinguishable.

As for the systemic model, two levels of experimentation, d where simulated
using each method. The results are presented as Figures 6 and 7. As stated above
(Section 2.2), the systemic model is interesting because it allows us to compare the
two simulation methods when we add gravity towards the center of the strategy
simplex. For the larger level of experimentation, d = 0.05 (Figure 6) we see
that the results of the two methods are quite different. First, note that while in
all cases both methods choose the ‘mostly demanding 1/2’ equilibrium, the AB
method stubbornly fixes at a frequency of 0.97 half-demanders while the numerical
method chooses the fixed point of a1/2 = 0.8511. Obviously, all comparisons are
highly significantly different due mostly to the difference in the frequency of half-
demanders selected. Also of note is the difference in time to convergence when
half-demanders start out as a low fraction of the population. The contours are now
much less steep in the AB simulations and hence the process converges much less
quickly than the numerical simulations.

When the level of experimentation is reduced to d = 0.01 in Figure 7 we again
find that both models pick the same equilibrium in the most general sense, but the
AB simulations over-emphasize the draw of the equal split as was also seen in the
d = 0.05 case. However the difference is not nearly as drastic here (compare 0.99
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Figure 6. Comparison of agent based and numerical simulations – systemic model (d = 0.05).

Figure 7. Comparison of agent-based and numerical simulations – systemic model
(d = 0.01).
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Figure 8. Comparison of agent-based and numerical simulations – assortative model
(z = 0.25).

to 0.97). Also, the convergence times are much more similar from a common start-
ing state than was the case with d = 0.0512. Overall, the simulations of the systemic
model demonstrate that the AB approach seems to do an adequate job of selecting
equilibria, but the final equilibrium state tends to differ between the two methods. It
appears, too, that as the draw towards the middle of the simplex increases (i.e. d ↑),
the AB method performs less well in identifying the proper population distribution.
We can conjecture as to why the two methods yield different results. Obviously,
the AB model underestimates the theoretical draw to the middle of the strategy
simplex. One reason for this might have to do with the difference between the finite
population realization of the model and the numerical results which are based on
an infinite population. We return to this point in Section 4.3.

4.2. CONVERGENCE IN THE ASSORTATIVE AND SOPHISTICATED MODELS

With the assortative model we can test how the simulation methods react when
we change the pairing rule of the generic model. Also, using the sophisticated
model we can explore what happens as we expand the strategy set and add weakly
dominated strategies. We begin by examining what happens when interactions
become assortative. Figures 8 and 9 report simulation results for two different
levels of assortation that have been chosen to straddle the critical value reported
in Proposition 4. When 25% of interactions are between like types (Figure 8), we
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Figure 9. Comparison of agent-based and numerical simulations – assortative model
(z = 0.35).

find two major results. First, the AB method tends to converge quicker than the
numerical simulations and second, the AB model incorrectly chooses the all half-
demander equilibrium for very low values of initial half-demanders13 . When the
level of assortation rises above the critical value of 0.33 to 0.35 (Figure 9) then the
two methods pick the same equilibrium in each case. However, the trend of the AB
simulation converging quicker is maintained as the level of assortation rises. This
indicates that the AB method simulates much steeper contours than the numerical
method in the assortative model. This reverses the result of the systemic model in
which d = 0.01 and the convergence times were much quicker in the numerical
simulations.

As predicted by Proposition 5, which states that any distribution composed of
more than fifty percent half demanders and the rest responsive agents is an equi-
librium, there are many more stable equilibria in the sophisticated model. Five
equilibria are shown in Figure 10, which plots the evolution of half-demanders
from various starting states. Notice first that there appears to be a critical level
of half-demanders around 0.20 such that when there are more than 20 percent
half demanders in the initial populations, they end up sharing an equilibrium with
responsive agents, but for less than 20 percent the greedies quickly dominate the
population and there is 100 percent conflict.
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Figure 10. Comparison of agent-based and numerical simulations – responsive model.

As for the performance of the AB method, we see that the AB simulations are
actually very good at selecting the same equilibria as the numerical simulations
in many cases (e.g. starting with a1/2 = 0.6, 0.5 or below 0.2). This is interesting
because in the responsive model equilibrium selection is much more difficult than
in the other two models where the phase space is split between only two equilibria.
This demonstrates that the AB method does not summarily do away with weakly
dominated strategies. However, there are other cases (e.g. a1/2 = 0.21, 0.3) where
the AB method performs rather poorly. Figure 10 highlights the case of the initial
state with 30 percent half-demanders in which the AB method picks the wrong
equilibrium entirely (compare line A–B∗ to D∗). As far as our other criteria, time
to convergence is concerned, the AB model does quite well when it selects the
correct equilibrium14.

4.3. DISCUSSION

Overall, the agent-based method of simulating complex evolutionary models seems
to match rather well the behavior seen in the numerical simulations. However, had
we stopped after reporting the results in Figure 5 for the basic discrete model we
might have prematurely recommended that agent-based methods accurately ap-
proximate numerical simulations thinking they also accurately predict equilibria in
more complex evolutionary models. Therefore, exploring our three variants of the
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basic Nash demand game is an important undertaking because we have been able
to stress-test the AB method by digging four pitfalls. Using the systemic model we
have shown that the AB approach does quite well in selecting fixed points in a very
general sense, but given enough gravity towards the center of the strategy simplex,
the accuracy of the AB’s final population distribution prediction deviates substan-
tially – it under-predicts the force of this type of gravity. Secondly, by changing the
rule that pairs agents, we see that assortation can potentially disrupt the power of
the AB method to select equilibrium altogether. Finally, by adding strategies and
thereby making some demands weakly dominated, the sophisticated model lays
another trap. Despite this, the AB method tracked the numerical simulations very
well in that it selected the appropriate equilibrium from many possibilities and
accurately predicted the final population distribution.

What might account for the deviations we have seen between the AB sim-
ulations and the numerical simulations? For the specific case of the assortative
interaction model one reason why the AB simulations are likely to have converged
quicker and picked the wrong equilibrium in the low assortation case is because
of the structural decision that had to be made concerning how to handle like-type
interactions and shuffling given an array of agents (see Section 3.2). On a more
general level another strong candidate mentioned in the introduction is the fact that
the AB method must work with a finite population while the numerical method can
maintain the assumption of infinitely many agents. To examine this hypothesis we
can further explore the scenario in which the AB and numerical simulations differ
the most – the systemic model where d = 0.05. To see whether the size of the
population of bargainers matters we can conduct a simple comparative static ex-
periment. We can fix a starting distribution and then evaluate the effect of changing
the number of agents in the AB simulation. Figure 11 reports the results of this
experiment.

As one can see the most prominent effect of increasing the number of agents
is to smooth out the time paths in the AB simulations. This is true in both Frame
A, where the starting state is a1/2 = 0.45, and in Frame B, where the starting
state is a1/2 = 0.167 (the internal unstable Nash equilibrium). Actually, rather than
reducing the predicted equilibrium frequency of half-demanders as the population
size increases, the AB method does best at predicting the fixed point by using
between 500 and 2000 agents. This claim is justified by noticing that the equilibria
selected using 500 or 2000 agents is closer to the numerical simulation than are the
other cases including the simulations using 1 million bargainers15.

Axtell et al. (1996) discuss what they term docking: whether or not two com-
putational models can produce the same result. The current paper is work in this
same vein but differs in two ways. First this paper looks as evolutionary bargaining
models in particular and second, the work detailed above seeks to answer a slightly
different question. Rather than asking whether one computational model can be
subsumed by another we are interested in whether the agent-based approach is
something to be pursued for more complicated models of bargaining. The answer
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Figure 11. The effect of poluation size in the systemic model (d = 0.05).
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to this question is a tentative yes and the Axtell et al. (1996) framework can help
understand why. One of the criteria for determining whether two models can be
docked is called distributional equivalence. Basically this means that, controlling
for starting positions, models are distributionally equivalent if their results can
be shown to not differ statistically. Using this criteria the agent-based method
performed quite well, but in the end it fails. However, a more loose criteria is
relational equivalence which means that while the results are not dead-on the same,
the two methods largely produce similar results. With reference to the results of this
study this can be taken to imply that the two approaches select the same equilib-
ria in a very general sense. In this case, the agent-based method for simulating
evolutionary bargaining models does pass the test. As a result we can say that
the agent-based method for computing equilibria is substantially equivalent to the
analytical/numerical approach.
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Appendix

Proofs of Propositions 1–5

Proof of Proposition 1. The first condition in the definition of evolutionary
stability assures that an ESS is also a Nash equilibrium of the underlying game.
This allows us to restrict attention on the Nash equilibria of D as candidates for
evolutionary stability. Suppose there is a Nash equilibrium (e, e) where e is fully
supported and e is also an ESS. By construction e must be a strategy that equalizes
the payoffs to each pure strategy. Therefore we know that the first condition for
an ESS holds as an equality when checked against each pure strategy. This means
we can focus on the second or viability condition. The highest payoff of a pure
strategy played against itself results when two 1/2 demanders meet. Therefore if e
is an ESS, it must be the case that π(e, 1/2) > 1/2. The payoff of e against the
pure strategy 1/2 is pe/3+qe/2 where pe and qe are the probabilities of demanding
1/3 and 1/2, respectively, when using e. The payoff π(e, 1/2) reaches a maximum
of 1/2 when qe equals 1. However this leads to a contradiction because e is fully
supported and therefore pe + qe < 1. Hence, no fully supported strategy can be an
ESS of D . �
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Proof of Proposition 2. To prove Proposition 2 we must only show that the
eigenvalues calculated at the asymmetric and symmetric equilibria have negative
real parts. At the asymmetric equilibrium the eigenvalues are –0.22 and –0.03 and
at the symmetric equilibrium the eigenvalues are –1/2 and –1/6. �

Proof of Proposition 3. Because closed-form solutions of (6) and (7) are nearly
impossible to calculate, analytically we allow the numerical simulation to calculate
them for us and then show that such a population distribution is stable. The simula-
tions select an equilibrium distribution of (0.03, 0.96, 0.01) when d = 0.013. In this
case, the eigenvalues are –0.47 and –0.16 for the selected equilibrium. Mathematica
shows the critical value of d where the eigenvalue becomes zero is 0.01296. �

Proof of Proposition 4. There are four closed form solutions to the system (8)–
(9) and two non-feasible solutions. We disregard the fixed point (0,0). The three
other fixed points are (1/2,0), (1,0) and (0,1). Construct the Jacobian matrix for the
system (8)–(9). At the fixed point (1,0) the Jacobian has strictly positive eigenval-
ues and therefore is a source for any value of z. At the point (1/2,0) the eigenvalues
of the Jacobian are {−1/6, (3z − 1)/12}. The second value is positive for z > 1/3.
Finally, the eigenvalues of the Jacobian at the point (0,1) are {5/6,−(1 + z)/2}
which are both negative for any z > 0. �

Proof of Proposition 5. (Adapted from Proposition 1 Ellingsen, 1997). First
define {A|A1/2 ≥ 1/2 and ar = 1−a1/2}. We first need to show that any population
a ∈ A is a NSS. Any a is robust to invasion by any demand x < 1/2 because
π(a, a) = 1/2 > a1/2x + (1 − a1/2)x = x = π(x, a). Any distribution a is also
robust to invasion by immodest strategies y > 1/2 because π(a, a) = 1/2 >

(1 − a1/2) > (1 − a1/2)y = π(y, a). Finally, we see that π(a, a) = 1/2 = π(v, a)

for v ∈ {1/2, r}. Hence, any a ∈ A is a Nash equilibrium and therefore a NSS, but
the last equality prevents a from being an ESS.

Now the ‘only if’ part. First, it is obvious that if ar > 1/2, then the greedy
strategy (x − 1) can invade. However, if ar = 1/2 = a1/2, then being greedy does
just as well as the current population, and therefore a is still a Nash equilibrium, but
not a NSS. To see this consider invasion by a small population consisting of both
greedy and responsive agents. In this case the fraction of responsive agents will
be pushed above one-half and therefore greedys earn an average payoff slightly
larger than 1/2. We can eliminate invasion by populations of agents demanding less
than half because any mix of these strategies does strictly worse than demanding
1/2. Also Proposition 1 has already shown that fully supported strategies are not
evolutionarily stable under D and this result can be generalized to D′. The last
possibility to check is that no mixture of responsive and 2/3 can invade. It is clear
the greedy agents would dislodge such a population. �
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Notes
1 Axtell, Epstein and Young (2000), for example.
2 A bargaining convention in this context can be defined as one of multiple stable equilibria of

the underlying game (Sugden, 1986).
3 Adding the two strategies (2/5, 3/5) or (1/5, 4/5) and hence increasing the strategy space only

adds equilibria along the diagonal. Numerical simulations show that this does not add stable fully
supported equilibria nor does it remove previously stable equilibria.

4 A strategy is said to be neutrally stable (NSS) if the strategy is incumbent and no invading
strategy is more fit (Weibull, 1995).

5 The point of calculating both the ESSs if the finite Nash demand game and the stable fixed
points of the corresponding replicator dynamics is that the two sets do not always coincide when the
dynamics are nonlinear. Friedman (1991) for example of games in which the two concepts do not
coincide.

6 For rates of experimentation between 0.013 and 0 the asymmetric Nash equilibrium remains
stable. This fact was pointed out by Rob Axtell.

7 This model is adapted from Skyrms (1994).
8 This model is a simplification of Ellingsen (1997).
9 All the simulations discussed below were programmed in Visual Basic for an IBM PC. Both

the code and executable programs are available from the author upon request.
10 This method is known as the Euler algorithm for integrating ordinary differential equations.
11 The AB method fixes at 0.97 rather than 0.95 because, while 5% of the agents are always

experimenting, a third of them choose to demand half. Plugging the values for a1/3 − 0.105 and
a1/2 = 0.854 into Equation (6) results in a value equal to 0.0000422 which, considering rounding,
defines and equilibrium of the perturbed replicator dynamic.

12 For example, even given the difference in end states, the largest difference between the two
methods, starting from a1/2 = 0.20, is insignificant (ks = 0.1905, p = 0.74).

13 The Kolmogorov-Smirnov test indicates significant differences (at the 5% level) in conver-
gence times in 8 of the 11 cases.

14 In 6 of the 9 case where the AB procedure picked the correct ending distribution the time paths
were indistinguishable at the 5% level.

15 The Kolmogorov-Smirnov statistics testing the difference between the 500 agent simulation
and the 1 million is Frame A: ks = 0.87, p = 0; Frame B: ks = 0.76, p = 0 and the statistic testing
the difference between the 2000 and 1 million is Frame A: ks = 0.90, p = 0; Frame B: ks = 0.78,
p = 0.
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